ZnO nanorod assemblies were grown by plasma-enhanced chemical vapor deposition on polycrystalline Al(2)O(3) at 200-300 degrees C, resulting in urchin-like 1-D ZnO NR arrays with a strong c-axis orientation. Their outstanding gas sensing responses and very low detection limits highlight the potential of the present systems in the production of high efficiency chemical sensors for a variety of applications
p-Type Co(3)O(4) nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H(2) from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co(3)O(4) results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co(3)O(4) films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.
Herein, we describe the design, fabrication and gas sensing tests of p-Co(3)O(4)/n-ZnO nanocomposites. Specifically, arrays of (001) oriented ZnO nanoparticles were grown on alumina substrates by plasma enhanced-chemical vapor deposition (PECVD) and used as templates for the subsequent PECVD of Co(3)O(4) nanograins. Structural, morphological and compositional analyses evidenced the successful formation of pure and high-area nanocomposites with a tailored overdispersion of Co(3)O(4) particles on ZnO and an intimate contact between the two oxides. Preliminary functional tests for the detection of flammable/toxic analytes (CH(3)COCH(3), CH(3)CH(2)OH, NO(2)) indicated promising sensing responses and the possibility of discriminating between reducing and oxidizing species as a function of the operating temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.