The discovery of bioactive glasses (BGs) in the late 1960s by Larry Hench et al. was driven by the need for implant materials with an ability to bond to living tissues, which were intended to replace inert metal and plastic implants that were not well tolerated by the body. Among a number of tested compositions, the one that later became designated by the well-known trademark of 45S5 Bioglass® excelled in its ability to bond to bone and soft tissues. Bonding to living tissues was mediated through the formation of an interfacial bone-like hydroxyapatite layer when the bioglass was put in contact with biological fluids in vivo. This feature represented a remarkable milestone, and has inspired many other investigations aiming at further exploring the in vitro and in vivo performances of this and other related BG compositions. This paradigmatic example of a target-oriented research is certainly one of the most valuable contributions that one can learn from Larry Hench. Such a goal-oriented approach needs to be continuously stimulated, aiming at finding out better performing materials to overcome the limitations of the existing ones, including the 45S5 Bioglass®. Its well-known that its main limitations include: (i) the high pH environment that is created by its high sodium content could turn it cytotoxic; (ii) and the poor sintering ability makes the fabrication of porous three-dimensional (3D) scaffolds difficult. All of these relevant features strongly depend on a number of interrelated factors that need to be well compromised. The selected chemical composition strongly determines the glass structure, the biocompatibility, the degradation rate, and the ease of processing (scaffolds fabrication and sintering). This manuscript presents a first general appraisal of the scientific output in the interrelated areas of bioactive glasses and glass-ceramics, scaffolds, implant coatings, and tissue engineering. Then, it gives an overview of the critical issues that need to be considered when developing bioactive glasses for healthcare applications. The aim is to provide knowledge-based tools towards guiding young researchers in the design of new bioactive glass compositions, taking into account the desired functional properties.
Structural and optical properties of antimony-containing sodium borate glasses were studied and their ultrafast third-order nonlinear optical (NLO) properties have been evaluated using Z-scan measurements with femtosecond (fs) pulses (∼150 fs, 80 MHz) at 750, 800, and 880 nm wavelengths. Glasses in the (mol %) 20Na 2 O−(80 − x)B 2 O 3 −xSb 2 O 3 (where x = 0, 10, 20, and 30) system have been fabricated via melt quench technique. The structural modifications were analyzed using the Raman and magic angle spinning (MAS)-nuclear magnetic resonance (NMR) ( 11 B MAS-NMR and 23 Na MAS-NMR) techniques. The optical absorption spectra revealed that the absorption edge was red-shifted, suggesting the decrease in band gap energy with increase of antimony content in the glasses. Raman scattering results revealed that the boroxol rings are depressed with the incorporation of Sb 2 O 3 for replacing B 2 O 3 . 11 B MAS-NMR results showed a progressive increase of B 4 units at the expense of B 3 units. The Raman and 11 B MAS-NMR results support the formation of Sb 5+ ions due to oxidation of Sb 3+ that played the role of charge compensation. 23 Na MAS-NMR spectra revealed a decreasing trend in the average of bond lengths of Na−O with increasing Sb 2 O 3 contents. This suggested that sodium changed its role from charge compensator to modifier cation. The antimony-containing glasses demonstrated a reverse saturable absorption in open-aperture Z-scan mode due to two-photon absorption, while closed-aperture Z-scan signatures depicted positive nonlinear refraction due to self-focusing effect. The NLO coefficients were found to increase with Sb 2 O 3 due to the increased nonbridging oxygens and also due to the hyperpolarizability of Sb 3+ and Sb 5+ ions. The observed NLO data clearly suggest that the investigated glasses are beneficial for optical limiting applications.
The present work aims at evaluating the potential gains derived from partially replacing calcium in resorbable β-tricalcium phosphate (β-TCP) by two different molar percentages of strontium (5, 10) and zinc (1, 2), concomitantly with a fixed molar percentage (0.5) of manganese. Synthetic granular composite bone filling grafts consisting of doped β-TCP and an alkali-free bioactive glass were prepared and implanted in ~4 mm diameter bone defects drilled in the calvaria of Wistar rats used as animal models. The animals were sacrificed after 9 weeks of implantation and the calvaria was excised. Non-manipulated bone was used as positive control, while empty defects were used as a negative control group. The von Kossa staining revealed an enhanced new bone formation with increasing doping levels, supporting the therapeutic effects exerted by the doping elements. The percentage of newly formed bone was similar when the defects were filled with autologous bone, BG (previous results) or 3TCP2/7BG, which indicates that the latter two are excellent candidates for replacement of autologous bone as bone regeneration material. This finding confirms that doping with suitable doses of therapeutic ions is a good strategy towards transposing the bone graft materials to biomedical applications in humans.
The combination of calcium phosphates with bioactive glasses (BG) has received an increased interest in the field of bone tissue engineering. In the present work, biphasic calcium phosphates (BCP) obtained by hydrothermal transformation of cuttlefish bone (CB) were coated with a Sr-, Mg- and Zn-doped sol-gel derived BG. The scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. The initial CB structure was maintained after hydrothermal transformation (HT) and the scaffold functionalization did not jeopardize the internal structure. The results of the in-vitro bioactivity after immersing the BG coated scaffolds in simulated body fluid (SBF) for 15 days showed the formation of apatite on the surface of the scaffolds. Overall, the functionalized CB derived BCP scaffolds revealed promising properties, but further assessment of the in-vitro biological properties is needed before being considered for their use in bone tissue engineering applications.
Yttria‐stabilized zirconia (YSZ) scaffolds with a planned macroporosity fraction of about 70% were fabricated by Robocasting from inks with high solid loadings. The effects of solids loading and the concentrations of processing additives on the flow behavior of the starting suspensions and the viscoelastic properties of the resulting inks were investigated aiming at optimizing the printing process. The shear thinning flow behavior of the starting suspensions containing 45‒48 vol% solids and dispersant concentrations varying within 0.2‒0.8 wt% could be well described by the four‐parameter Cross model. The flow behavior of the suspensions could be correlated with the interaction forces, and the ad‐layer thickness formed around the YSZ particles. Further adding suitable amounts of a binder and a coagulating agent enabled optimizing the viscoelastic properties of inks for 3D printing. Good shape retention was observed for inks with elastic modulus, G′ ≥ 10 MPa. The green scaffolds were dried, sintered at 1350°C, and then used for the assessment of porosity and mechanical properties under compression tests. The porous structures exhibit average compressive strength (σ) of ~70 MPa. Weibull statistics applied to σ data revealed good reliability of the process, which can be used to fabricate YSZ scaffolds for orthopedic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.