The objective of the study was to examine the effects of the relative age effect (RAE) and predicted maturity status on body size and repeated sprint ability (RSA: 7 x 34.2 m / 25 s interval) in youth soccer. The sample was composed of 197 male players aged 13-14 years. Body mass, stature, and sitting height were measured, RSA was assessed in the field, and age at peak height velocity (APHV) was predicted. Factorial ANOVA tested the independent and combined effects of RAE given by birth quarters (BQs) and maturity status on dependent variables. Players born in the second birth quarter (BQ2) were significantly taller (F = 4.28, p < 0.01) than their peers born in BQ1 and BQ3. Additionally, players born in BQ2 performed better than players born in BQ4 in RSA total time and ideal time (F ranged between 4.81 and 4.90, p < 0.01), while players born in BQ1 exhibited a lower RSA fatigue index compared to those born in BQ4 (F = 2.90, p < 0.05). The interaction of the BQ and maturity status was a significant source of inter-individual variation for body size (F ranged between 64.92 and 105.57; p < 0.01) and RSA output (F ranged between 4.082 and 6.76; p < 0.05). In summary, being relatively older and, simultaneously, advanced in maturity status corresponds to a substantial advantage in characteristics that are related to soccer-specific fitness.
The current study aimed to examine the reliability of the conventional and functional ratios derived from peak torques (PTs) and those obtained from the combination of knee flexors torque at the angle of knee extensors PT. Twenty-six male athletes (mean of 24.0±0.7 years) from different sports completed a test-to-test variation in isokinetic strength (Biodex, System 3) within a period of one week. Anthropometry and body composition assessed by Dual Energy X-ray Absorptiometry were also measured. The proposed isokinetic strength ratio measurements appeared to be highly reliable: conventional ratio at PT angle (intra-class correlation, ICC = 0.98; 95% confidence interval; 95%CI: 0.95 to 0.99); functional extension ratio at PT angle (ICC = 0.98; 95%CI: 0.96 to 0.99); and, functional flexion ratio at PT angle (ICC = 0.95; 95%CI: 0.89 to 0.98). Technical error of measurement (TEM) and associated percentage of the coefficient of variation (%CV) were as follows: conventional ratio at PT angle (TEM = 0.02; %CV = 4.1); functional extension ratio at PT angle (TEM = 0.02; %CV = 3.8); and, functional flexion ratio at PT angle (TEM = 0.03; %CV = 3.6). The current study demonstrated that the traditional and new obtained simple and combined isokinetic indicators seem highly reliable to assess muscle strength and function in adult male athletes. A single testing session seems to be sufficiently to obtain these isokinetic strength indicators.
Interrelationships among skeletal maturity status, body size, ventilator thresholds (VT) and peak oxygen uptake (VO2peak) were considered in 47 adolescent male soccer players aged 12.5–15.4 years. Body mass, stature, and the triceps and subscapular skinfolds were measured. The latter were used to estimate fat mass and fat-free mass. Skeletal age was assessed with the Fels method. VO2peak and VO2 at the first (VT1) and second (VT2) ventilatory thresholds were determined during an incremental maximal exercise test on a motorized treadmill. Ratio standards and allometric models were used in the analysis. Scaling exponents suggested linearity for all combinations between size descriptors and physiological variables, except between log-transformed values of VT1 and body mass (mL·kg-0.801·min, 95%CI: 0.649 to 0.952). Early maturing players attained greater values than players classified as “on-time” in skeletal maturity for the three ventilatory parameters expressed in absolute terms (d ranged from 0.65 to 0.71). The differences were attenuated after normalizing for mass descriptors using ratio standards and scaled variables (d ranged from 0.00 to 0.31). The results suggested significant variability between maturity groups when moving from VT1 to maximal metabolic conditions expressed by unit of stature (VT1: t = -2.413, p = 0.02, d = 0.60; VT2: t = -2.488, p = 0.02, d = 0.65; VO2peak: t = -2.475, p = 0.02, d = 0.65). Skeletal maturity status and associated variation in overall body size affects VT1, VT2 and VO2peak. The observed scaling of ventilatory outputs for body size may be related to the better running economy and smaller body size of average maturing athletes.
Background This study aimed to determine the allometric exponents for concurrent size descriptors (stature, body mass and fat-free mass) and also to examine the contribution of chronological age and pubertal status combined with above mentioned size descriptors to explain inter-individual variability in the peak of oxygen uptake ( V O 2peak ) among girls during circumpubertal years. Methods The final sample included 51 girls (10.7–13.5 years). V O 2peak was derived from an incremental progressive maximal protocol using a motorized treadmill. Anthropometry included body mass, stature and skinfolds. Measurements were performed by a single trained observer. Sexual maturation was assessed as self-reported stage of pubic hair (PH) development. Static allometric models were explored as an alternative to physiological output per unit of size descriptors. Allometry also considered chronological age and sexual maturation as dummy variable (PH2 vs. PH3 and PH3 vs. PH4). Results Scaling coefficients for stature, body mass and fat-free mass were 1.463 (95%CI: 0.476 to 2.449), 0.516 (95%CI: 0.367 to 0.666) and 0.723 (95%CI: 0.494 to 0.951), respectively. The inclusion of sexual maturation increased explained variance for V O 2peak (55% for PH2 vs. PH3 and 47% for PH3 vs. PH4). Body mass was identified as the most prominent body size descriptor in the PH2 vs. PH3 while fat-free mass was the most relevant predictor combined with PH3 vs. PH4. Conclusions Body mass and fat-free mass seemed to establish a non-linear relationship with V O 2peak . Across puberty, inter-individual variability in V O 2peak is explained by sexual maturation combined with whole body during early puberty and by sexual maturation and fat-free mass during late puberty. Additional studies need to confirm ontogenetic allometric models during years of maximal growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.