Apolipoprotein A5 (APOA5) and apolipoprotein E (APOE) play important roles in the metabolism of cholesterol and triglycerides. The aim of this study was to determine the allelic and genotypic distributions of the APOA5-1131T>C (rs 662799) and the APOE HhaI polymorphisms and to identify the association of both individual and combined APOA5-APOE genetic variants and the risk for dyslipidemia in children and adolescents. We genotyped 53 dyslipidemic and 77 normolipidemic individuals. The total cholesterol, triglycerides and HDL cholesterol were determined enzymatically. For APOA5 polymorphism, the presence of the allele C confers an individual risk for dyslipidemia (OR = 2.38, 95% CI = 1.15-4.89; P = 0.018). No significant differences were observed for lipid parameters among the APOA5 groups, except for a higher value of HDLc (P = 0.024) in C-carriers. The allelic and genotypic frequencies of APOE polymorphism were similar between groups and did not increase the susceptibility for dyslipidemia. None of the combined APOA5-APOE polymorphisms increased risk for dyslipidemia. We demonstrated an association between APOA5-1131T>C polymorphism and dyslipidemia in children and adolescents. This finding may be useful to guide new studies with genetic markers down a path toward a better characterization of the genetic risk factors for dyslipidemia and atherosclerotic diseases.
ABSTRACT. We investigated the association between an aggrecan gene (ACAN) polymorphism and lumbar disc herniation (LDH). This was a case-control study with quinquennial age and gender groups. The study comprised 119 men and women aged between 20 and 60 from Goiânia (Brazil). Of these, 39 were allocated to the case group (Ca) and 80 to the control group (Ct). We gathered sociodemographic and clinical data, and peripheral blood samples. DNA was isolated for genotyping the ACAN variable number tandem repeat (VNTR) via conventional polymerase chain reaction (PCR). Data were statistically analyzed using the chi-square test, multiple comparison analysis, the Student t-test, and odds ratios, with a level of significance set at 5% (P ≤ 0.05). The groups were homogenous in terms of sociodemographic, anthropometric, and life style variables. The allele score for the ACAN VNTR was significantly lower in volunteers with LDH; the A22 allele was significantly more prevalent in this same group; the Ca group presented greater frequency of short alleles A13-A25, whereas the Ct group presented a higher frequency of long alleles. However, this difference was not statistically significant. In both groups, the most common alleles were A28, A27, and A29, and the A26/A26 genotype was significantly more common in the Ca group. The results showed an association between short alleles and LDH among the investigated adults (Ca), corroborating the hypothesis that aggrecan with shorter repeat lengths can lead to a reduction in the physiological proteoglycan function of intervertebral disc hydration and, consequently, increased individual susceptibility to LDH.
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.