The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monitored every fortnight between 2000 and 2001. Phytoplankton diversity and densities were measured and correlated to environmental parameters. A seasonal phytoplanktonic succession was observed and it was mainly correlated with conductivity, temperature, total suspended solids and nutrients availability (particularly phosphorus). Diatoms were dominant during winter months (inferior temperatures and higher nutrients availability) followed by green algae in early spring and then cyanobacteria from late spring until early autumn (less nutrient availability and higher temperatures). A massive cyanobacterial bloom of Aphanizomenon flos-aquae occurred early in May 2001 and was preceded by the lowest nitrogen levels measured in the water during all the study period. At the time of this bloom senescence, dissolved oxygen was severely depleted and a massive death of ichthyofauna was recorded. A Microcystis aeruginosa bloom was also detected in July 2001 and it occurred following a rapid decrease in abundance of green algae and diatoms. By considering not only the environmental parameters but also the occurrence of cyanobacterial blooms as explanatory variables in a canonical correspondence analysis, the variance explained for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae.
In order to investigate the bacterial diversity in a number of rivers, reservoirs and lakes in northern and central Portugal during the winter of 2004/5 (atypically dry), we applied molecular methodologies, namely denaturing gradient gel electrophoresis with primers targeting fractions of the bacterial 16S rRNA gene. Environmental parameters such as pH, conductivity, inorganic nutrients, total suspended solids and chlorophyll a were determined in order to characterize the trophic status of the studied water bodies. We found water bodies with oligotrophic to hypereutrophic characteristics. Organisms belonging to the Bacteroidetes and Alphaproteobacteria were found at the highest pH environment. Bacteroidetes were also related to high nutrient concentrations. Verrucomicrobia were associated with the most oligotrophic reservoir and low pH values. Actinobacteria were present in all samples from lakes and reservoirs, indicating its preference for lentic water bodies. Cyanobacteria dominance was related to high pH and conductivity levels. In general the conductivity values recorded in winter 2005 were the highest over recent years and chlorophyll a also reached very high levels. The data emphasize an enhanced risk of eutrophication for the studied water bodies, especially in the subsequent months when the temperature rises.
Studies of cyanobacterial nostocacean taxa are important to the global scientific community, mainly because a significant number of beneficial strains that belong to the order Nostocales fix atmospheric nitrogen, thus contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and physiological studies, which generate confusing classification systems and usually vary under different conditions. Therefore, the present research aimed to investigate through a polyphasic approach differences in morphological, biochemical and genotypic features of three nostocacean cyanobacterial strains isolated from central-western Portuguese shallow freshwater bodies. Morphometric, genetic (16S rRNA, nifH and hetR fragments) and biochemical (fatty acid methyl ester; FAME profiles) data were used to characterize the strains. Morphological analysis and sequencing of 16S rRNA fragments showed that the strains belonged to Anabaena cylindrica (UTAD_A212), Aphanizomenon gracile (UADFA16) and Nostoc muscorum (UTAD_N213) species. These strains showed clear distinct morphological and genetic features, allowing easy allocation to their respective genera. The same happened by using partial sequences of hetR and nifH genes, in spite of the scarcity of deposited sequences. Biochemical characterization showed that the FAME profiles obtained were consistent with both morphological and molecular analyses. It was suggested that the ratio of monounsaturated to polyunsaturated FAMEs, together with the unsaturation index, could be used as genus-specific chemotaxonomic biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.