Polylactic acid (PLA) is one of the most extensively used biodegradable aliphatic polyester produced from renewable resources, such as corn starch. Due to its qualities, PLA is a leading biomaterial for numerous applications in medicine as well as in industry, replacing conventional petrochemical - based polymers. The purpose of this paper is to highlight the mechanical properties, such as tensile stress, of pure PLA specimens in comparison with PLA based-composites, with three different added materials in PLA mass: Copper, Aluminum and Graphene, as well as the influence of filament angle deposition on these properties. In order to check if the the filling density of the specimen influences the ultimate tensile stress (UTS), three different filling percentages (60%, 80% and 100%) have been chosen in the experimental tests. In this context, the mechanical characteristics of four different filament types based on PLA material, starting from pure PLA to PLA with Aluminum, Copper or Graphene filler are compared. Understanding and controlling these parameters is essential for the successful use of PLA and PLA-based composites in different areas such as medical applications, sport equipments and light industry.These tests have been performed due to the fact there is a lack of information concerning the mechanical properties. In the scientific literature, such information is only available for expensive printing systems; for open source printers (as those used in these tests), the information is poor and for some new materials, even inexistant. According to the technical specifications, for an expensive printer the cost may exceed 3000 Euros, with a minimum layer resolution of 100 m, this type of printer can reliably reproduce many 3D objects accurately, in quiter conditions.
Glass reinforced plastic, so called GRP, is a composite material made of glass strands called fibbers woven together to create a flexible fabric. GRP is a lightweight material with many and diverse applications ranging from the manufacture of reservoirs for different liquids to the manufacture of boats, yachts, chairs and even children playground furniture. The behaviour of this material under static and dynamic loads is still raising interest from the scientific community and a large number of researchers. This continued interest is due to the material versatility for different applications depending on its manufacture process that has a significant weigh-in in the material mechanical properties. These resulting mechanical properties need to be carefully analysed and benchmarked prior to using the obtained material in commercial applications. The scope of this research study is to analyse the behaviour of glass reinforced plastic plate panel with reinforcements on one and two directions under static and dynamic loads employing both experimental and numerical methods for results validation. The methods used in this research study for the dynamic loads can also be applied successfully to other composite materials. Additionally, the stress plots have been analysed in iteration in order to ensure the most optimal reinforcement pattern.
The present paper analyses the possibility of using the digital image correlation technique to study the mechanical behavior of small scale components. A microscope is supplemented to the equipment for magnification, together with a miniature tensile testing machine. Several samples with already studied stress concentrators were analyzed. For comparison purposes, a finite element model of the geometry, with appropriate loading conditions, is created and the strain field is compared, in orderv to be validated to the experimental one. Results show that an accurate reading can be made by using this technique. Furthermore, crack initiation and its propagation path can be determined, by the appearance of high strains in the region.
During the winters, the waters of the rivers freeze because of the low temperatures. In such situations, it is necessary to ensure the traffic of cargo and passenger ships that the formed ice patches be broken and cleared. Ice breakers are used for this purpose. These ships are of special construction that require significant investments. In this paper, a con-cept of an icebreaker module that can be attached to an existing tugboat in service is pro-posed. The paper presents a concept adapted to the Danube river and to an existing tug in service on the same river.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.