The paper presents numerical analysis of block made of three layers: concrete with I-shape rubber pads, space filled with air and concrete with embedded cross rubber pads, respectively. The block is subjected to the dynamic load. To the analysis as rubber the hyperelastic incompressible Zahorski material model was assumed. This material well describes the real material properties in the range of large elastic deformations. Embedded rubber pads provide an additional protection against the transversal dynamic load. ADINA software was utilized to perform numerical analysis of determining the percentage damping factor of rubber-concrete composite in comparison with block made of concrete.
The problem of simulation of moving load effect on bridges is a relatively old problem. It was induced by the collapse of the Chester Rail Bridge in England in the year 1847 and can be traced in the literature since the year 1849. The new generation of young research workers is capable to contribute to the solution of the problem with new findings. The contribution is devoted to the modeling of the vehicle motion along a two-span bridge in the environment of the program system ADINA. The task is solved as a plane problem. It described the creation of a discrete computational model of vehicle with 8 degrees of freedom. The bridge is modeled using beam elements. It is assumed that the vehicle enters the bridge already vibrant. The vehicle and bridge response is modeled when vehicle driving at the speed of 70 km/h. The time course of oscillation of vehicle model's characteristic points and the oscillation of mid spans of individual bridge fields are shown graphically. Important results are given in numerical form. The Newmark's method is used for the solution of equations of motion.
In this work considerations concerning eccentrically loaded socket footing with cut-off pyramid shaped socket were presented. As an object of study sloped footing with 1.40 m height, corresponding to the maximum frost depth has been adopted. Knowing that in practice there are no perfect pure axial loads, load applied on the eccentricity has been taken into considerations. Eccentric loads result in footing rotation in the direction of eccentricity and acting load, hence one footing end is imbedding into the ground, whereas second end tries to rise up. To observe that phenomenon, elastic type of support under the foundation was introduced corresponding to the naturally humid sand with medium compaction. Presented in this paper considerations of innovative connection technology between footing and column were based on performed numerical studies. Advantages and disadvantages of presented footing in comparison to normal socket footings solutions were widely discussed. Numerical analyses were performed with the utilization Finite Element Method based SolidWorks software.
The dynamic effect of the moving load on the bridge construction is the subject of the solution in this article. The bridge is modeled as two span continuous beam with two degrees of freedom. The assumption describing the dynamic deflection curve and the assumption describing the load distribution on individual lumped masses are adopted at the creation of bridge computational model. The plane computational model of heavy vehicle with five degrees of freedom is adopted. The problem is described by ordinary differential equations which are solved numerically by using MATLAB. The results are presented by graphical and numerical form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.