Abstract. The variation in pH-dependent calcification responses of coccolithophores paint a highly incoherent picture, particularly for the most commonly cultured "species", Emiliania huxleyi. The disparity between magnitude and even sign of the calcification change at higher CO2 (lower pH), raises challenges to quantifying future carbon cycle changes and feedbacks, by introducing significant uncertainty in parameterizations used for global models. Putting aside the possibility of methodological differences that introduce an experimental bias, we highlight two pertinent observations that can help resolve conflicting interpretations: (1) a calcification "optimum" in environmental conditions (pH) has been observed in other coccolithophore species, and (2) there exists an unambiguous direction to the CO2-calcification response across mesocosm and shipboard incubations. We propose that an equivalence can be drawn between integrated ecosystem calcification as a function of pH (or other carbonate system parameter such as calcite saturation state) and a widely used description of plankton growth rate vs. temperature – the "Eppley curve". This provides a conceptual framework for reconciling available experimental manipulations as well as a quasi-empirical relationship for ocean acidification impacts on carbonate production that can be incorporated into models. By analogy to the Eppley curve temperature vs. growth rate relationship, progressive ocean acidification in the future may drive a relatively smooth ecosystem response through transition in dominance from more to less heavily calcified coccolithophores in addition to species-specific calcification changes. However, regardless of the model parameterization employed, on a century time-scale, the CO2-calcification effect is a minor control of atmospheric CO2 compared to other C cycle feedbacks or to fossil fuel emissions.
Closure of the Isthmus of Panama about 3 million years ago (Ma) was accompanied by dramatic changes in Earth's climate and biosphere. The Greenland ice sheet grew to continental extent and the great cycles of ice ages commenced dominating climate variability henceforth. Disruption of water mass exchange between the Atlantic and the Pacific Oceans led to different evolution of marine species on either side of the land bridge, while land‐based organisms including mammals and other animals took the advantage to colonize an entire subcontinent.
A 2‐day workshop at the University of Kiel (Germany) summarized our current knowledge of this time period and identified areas for new research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.