Coronavirus disease 2019 (COVID -19) is an acute infection of the respiratory tract that emerged in late 2019 1,2 . Initial outbreaks in China involved 13.8% of cases with severe courses, and 6.1% of cases with critical courses 3 . This severe presentation may result from the virus using a virus receptor that is expressed predominantly in the lung 2,4 ; the same receptor tropism is thought to have determined the pathogenicity-but also aided in the control-of severe acute respiratory syndrome (SARS) in 2003 5 . However, there are reports of cases of COVID-19 in which the patient shows mild upper respiratory tract symptoms, which suggests the potential for pre-or oligosymptomatic transmission 6-8 . There is an urgent need for information on virus replication, immunity and infectivity in specific sites of the body. Here we report a detailed virological analysis of nine cases of COVID-19 that provides proof of active virus replication in tissues of the
The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targetstreated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARSCoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion.
The four endemic human coronaviruses HCoV-229E, -NL63, -OC43, and -HKU1 contribute a considerable share of upper and lower respiratory tract infections in adults and children. While their clinical representation resembles that of many other agents of the common cold, their evolutionary histories, and host associations could provide important insights into the natural history of past human pandemics. For two of these viruses, we have strong evidence suggesting an origin in major livestock species while primordial associations for all four viruses may have existed with bats and rodents. HCoV-NL63 and -229E may originate from bat reservoirs as assumed for many other coronaviruses, but HCoV-OC43 and -HKU1 seem more likely to have speciated from rodent-associated viruses. HCoV-OC43 is thought to have emerged from ancestors in domestic animals such as cattle or swine. The bovine coronavirus has been suggested to be a possible ancestor, from which HCoV-OC43 may have emerged in the context of a pandemic recorded historically at the end of the 19th century. New data suggest that HCoV-229E may actually be transferred from dromedary camels similar to Middle East respiratory syndrome (MERS) coronavirus. This scenario provides important ecological parallels to the present prepandemic pattern of host associations of the MERS coronavirus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.