Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca10-xAgx(PO4)6(OH)2 (x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp (x = 0) and Ag:HAp (x = 0.2). The Ag:Hap nanopowder showed higher inhibition.
The synthesis of nanosized particles of Ag-doped hydroxyapatite with antibacterial properties is of great interest for the development of new biomedical applications. The aim of this study was the evaluation of Ca10−xAgx(PO4)6(OH)2 nanoparticles (Ag:HAp-NPs) for their antibacterial and antifungal activity. Resistance to antimicrobial agents by pathogenic bacteria has emerged in the recent years and became a major health problem. Here, we report a method for synthesizing Ag doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionised water. Also, in this paper Ag:HAp-NPs are evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria and fungal strains. The specific antimicrobial activity revealed by the qualitative assay is demonstrating that our compounds are interacting differently with the microbial targets, probably due to the differences in the microbial wall structures.
Ag-doped nanocrystalline hydroxyapatite nanoparticles (Ag:HAp-NPs) (Ca10-xAgx(PO4)6(OH)2, xAg = 0.05, 0.2, and 0.3) with antibacterial properties are of great interest in the development of new products. Coprecipitation method is a promising route for obtaining nanocrystalline Ag:HAp with antibacterial properties. X-ray diffraction identified HAp as an unique crystalline phase in each sample. The calculated lattice constants of a = b = 9.435 Å, c = 6.876 Å for xAg = 0.05, a = b = 9.443 Å, c = 6.875 Å for xAg = 0.2, and a = b = 9.445 Å, c = 6.877 Å for xAg = 0.3 are in good agreement with the standard of a = b = 9.418 Å, c = 6.884 Å (space group P63/m). The Fourier transform infrared and Raman spectra of the sintered HAp show the absorption bands characteristic to hydroxyapatite. The Ag:HAp nanoparticles are evaluated for their antibacterial activity against Staphylococcus aureus, Klebsiella pneumoniae, Providencia stuartii, Citrobacter freundii and Serratia marcescens. The results showed that the antibacterial activity of these materials, regardless of the sample types, was greatest against S. aureus, K. pneumoniae, P. stuartii, and C. freundii. The results of qualitative antibacterial tests revealed that the tested Ag:HAp-NPs had an important inhibitory activity on P. stuartii and C. freundii. The absorbance values measured at 490 nm of the P. stuartii and C. freundii in the presence of Ag:HAp-NPs decreased compared with those of organic solvent used (DMSO) for all the samples (xAg = 0.05, 0.2, and 0.3). Antibacterial activity increased with the increase of xAg in the samples. The Ag:HAp-NP concentration had little influence on the bacterial growth (P. stuartii).
Fourier transform infrared spectroscopy (FT-IR) analysis was conducted on europium-doped hydroxyapatite,Ca10-xEux(PO4)6(OH)2nanocrystalline powders (Eu:HAp) with0≤xEu≤0.2. Antimicrobial studies were also performed for the first time on Eu:HAp. The antimicrobial properties of Eu:HAp nanoparticles with0≤xEu≤0.2on Gram-negative (E. coli ATCC 25922,Pseudomonas aeruginosa 1397) and Gram-positive (Staphylococcus aureus 0364,Enterococcus faecalis ATCC 29212) bacteria systems and a species of fungus (Candida albicans ATCC 10231) were reported. Our study demonstrates that the antimicrobial activity of Eu:HAp nanoparticles is dependent on the europium concentration.
Obtaining nanoscale materials has allowed for the miniaturization of components, which has led to the possibility of achieving more efficient devices with faster functions and much lower costs. While hydroxyapatite [HAp, Ca10(PO4)6(OH)2] is considered the most widely used material for medical applications in orthopedics, dentistry, and general surgery, the magnesium (Mg) is viewed as a promising biodegradable and biocompatible implant material. Furthermore, Mg is regarded as a strong candidate for developing medical implants due to its biocompatibility and antimicrobial properties against gram-positive and gram-negative bacteria. For this study, magnesium-doped hydroxyapatite (Ca10−xMgx (PO4)6 (OH)2, xMg = 0.1), 10MgHAp, suspensions were successfully obtained by an adapted and simple chemical co-precipitation method. The information regarding the stability of the nanosized 10MgHAp particles suspension obtained by ζ-potential analysis were confirmed for the first time by a non-destructive ultrasound-based technique. Structural and morphological studies of synthesized 10MgHAp were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode and scanning electron microscopy (SEM). The XRD analysis of the 10MgHAp samples confirmed that a single crystalline phase associated to HAp with an average grain size about 93.3 nm was obtained. The FTIR-ATR spectra revealed that the 10MgHAp sample presented broader IR bands with less visible peaks when compared to a well-crystallized pure HAp. The SEM results evidenced uniform MgHAp nanoparticles with spherical shape. The antimicrobial activity of the 10MgHAp suspension against gram-positive strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212), gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as a fungal strain (Candida albicans ATCC 90029) were evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.