Obtaining nanoscale materials has allowed for the miniaturization of components, which has led to the possibility of achieving more efficient devices with faster functions and much lower costs. While hydroxyapatite [HAp, Ca10(PO4)6(OH)2] is considered the most widely used material for medical applications in orthopedics, dentistry, and general surgery, the magnesium (Mg) is viewed as a promising biodegradable and biocompatible implant material. Furthermore, Mg is regarded as a strong candidate for developing medical implants due to its biocompatibility and antimicrobial properties against gram-positive and gram-negative bacteria. For this study, magnesium-doped hydroxyapatite (Ca10−xMgx (PO4)6 (OH)2, xMg = 0.1), 10MgHAp, suspensions were successfully obtained by an adapted and simple chemical co-precipitation method. The information regarding the stability of the nanosized 10MgHAp particles suspension obtained by ζ-potential analysis were confirmed for the first time by a non-destructive ultrasound-based technique. Structural and morphological studies of synthesized 10MgHAp were conducted by X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy in attenuated total reflectance (ATR) mode and scanning electron microscopy (SEM). The XRD analysis of the 10MgHAp samples confirmed that a single crystalline phase associated to HAp with an average grain size about 93.3 nm was obtained. The FTIR-ATR spectra revealed that the 10MgHAp sample presented broader IR bands with less visible peaks when compared to a well-crystallized pure HAp. The SEM results evidenced uniform MgHAp nanoparticles with spherical shape. The antimicrobial activity of the 10MgHAp suspension against gram-positive strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212), gram-negative strains (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853), as well as a fungal strain (Candida albicans ATCC 90029) were evaluated.
The dispersion curves for guided waves have been of constant interest in the last decades, because they constitute the starting point for NDE ultrasonic applications. This paper presents an evolution of the semianalytical finite element method, and gives examples that illustrate new improvements and their importance for studying the propagation of waves along periodic structures of infinite width. Periodic boundary conditions are in fact used to model the infinite periodicity of the geometry in the direction normal to the direction of propagation. This method allows a complete investigation of the dispersion curves and of displacement/stress fields for guided modes in anisotropic and absorbing periodic structures. Among other examples, that of a grooved aluminum plate is theoretically and experimentally investigated, indicating the presence of specific and original guided modes.
This study proves that the new developed zinc-doped hydroxyapatite (ZnHAp) colloids by an adapted sol-gel method can be widely used in the pharmaceutical, medical, and environmental industries. ZnHAp nanoparticles were stabilized in an aqueous solution, and their colloidal dispersions have been characterized by different techniques. Scanning Electron Microscopy (SEM) was used to get information on the morphology and composition of the investigated samples. Energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the elemental compositions of ZnHAp colloidal dispersions. The homogeneous and uniform distribution of constituent elements (zinc, calcium, phosphorus, oxygen) was highlighted by the obtained elemental mapping results. The X-ray diffraction (XRD) results of the obtained samples showed a single phase corresponding to the hexagonal hydroxyapatite. The characteristic bands of the hydroxyapatite structure were also evidenced by Fourier-transform infrared spectroscopy (FTIR) analysis. For a stability assessment of the colloidal system, ζ-potential for the ZnHAp dispersions was estimated. Dynamic light scattering (DLS) was used to determine particles dispersion and hydrodynamic diameter (DHYD). The goal of this study was to provide for the first time information on the stability of ZnHAp particles in solutions evaluated by non–destructive ultrasound-based technique. In this work, the influence of the ZnHAp colloidal solutions stability on the development of bacteria, such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), was also established for the first time. The antimicrobial activity of ZnHAp solutions was strongly influenced by both the stability of the solutions and the amount of Zn.
In this paper, constitutive relations are solved in the Fourier domain using a finite-element-based commercial software. The dynamic responses of viscoelastic bars or plates to either thermal or mechanical loads are predicted by considering complex moduli (Young, Poisson, stiffness moduli) as input data. These moduli are measured in the same frequency domain as that which is chosen for modeling the wave propagation. This approach is simpler since it suppresses the necessity of establishing a rheological model. Specific output processing then allows the numerical predictions to be compared to analytical solutions, in the absence of scatterers. The performances of this technique and its potential for simulating more complicated problems like diffraction of waves or for solving inverse problems are finally discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.