SUMMARYCytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.
Contents Summary I. Biotic interactions in the context of genetic, epigenetic and environmental diversity II. Biotic interactions affect epigenetic configuration III. Plant epigenetic configuration influences biotic interactions IV. Epigenetic memory in the context of biotic interactions V. Conclusions and future research Acknowledgements Author contributions References SUMMARY: Plants are hubs of a wide range of biotic interactions with mutualist and antagonist animals, microbes and neighboring plants. Because the quality and intensity of those relationships can change over time, a fast and reversible response to stress is required. Here, we review recent studies on the role of epigenetic factors such as DNA methylation and histone modifications in modulating plant biotic interactions, and discuss the state of knowledge regarding their potential role in memory and priming. Moreover, we provide an overview of strategies to investigate the contribution of epigenetics to environmentally induced phenotypic changes in an ecological context, highlighting possible transitions from whole-genome high-resolution analyses in plant model organisms to informative reduced representation analyses in genomically less accessible species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.