Astrocytes in the brain form an intimately associated network with neurons. They respond to neuronal activity and synaptically released glutamate by raising intracellular calcium concentration ([Ca2+]i), which could represent the start of back-signalling to neurons. Here we show that coactivation of the AMPA/kainate and metabotropic glutamate receptors (mGluRs) on astrocytes stimulates these cells to release glutamate through a Ca2+-dependent process mediated by prostaglandins. Pharmacological inhibition of prostaglandin synthesis prevents glutamate release, whereas application of prostaglandins (in particular PGE2) mimics and occludes the releasing action of GluR agonists. PGE2 promotes Ca2+-dependent glutamate release from cultured astrocytes and also from acute brain slices under conditions that suppress neuronal exocytotic release. When applied to the CA1 hippocampal region, PGE2 induces increases in [Ca2+]i both in astrocytes and in neurons. The [Ca2+]i increase in neurons is mediated by glutamate released from astrocytes, because it is abolished by GluR antagonists. Our results reveal a new pathway of regulated transmitter release from astrocytes and outline the existence of an integrated glutamatergic cross-talk between neurons and astrocytes in situ that may play critical roles in synaptic plasticity and in neurotoxicity.
PrP knockout mice in which only the open reading frame was disrupted ('Zürich I') remained healthy. However, more extensive deletions resulted in ataxia, Purkinje cell loss and ectopic expression in brain of Doppel (Dpl), encoded by the downstream gene, PRND: A new PrP knockout line, 'Zürich II', with a 2.9 kb PRNP: deletion, developed this phenotype at approximately 10 months (50% morbidity). A single PRNP: allele abolished the syndrome. Compound Zürich I/Zürich II heterozygotes had half the Dpl of Zürich II mice and developed symptoms 6 months later. Zürich II mice transgenic for a PRND:-containing cosmid expressed Dpl at twice the level and became ataxic approximately 5 months earlier. Thus, Dpl levels in brain and onset of the ataxic syndrome are inversely correlated.
The Epstein–Barr virus (EBV)-encoded latent membrane protein-1 (LMP1), a functional homologue of the tumor necrosis factor receptor family, substantially contributes to EBV's oncogenic potential by activating nuclear factor-κB (NF-κB). miR-155 is an oncogenic miRNA critical for B-cell maturation and immunoglobulin production in response to antigen. We report that miR-155 expression is much higher in EBV-immortalized B cells than in EBV-negative B cells. LMP1, but not LMP2, up-regulated the expression of miR-155, when transfected in EBV-negative B cells. We analyzed two putative NF-κB binding sites in the miR-155 promoter; both sites recruited NF-κB complex, in nuclear extract from EBV-immortalized cells. The exogenous expression of LMP1, in EBV-negative background, is temporally correlated to induction of p65 with binding on both NF-κB sites and with miR-155 overexpression. The induction of p65 binding together with increased RNA polymerase II binding, confirms that LMP1-mediated activation of miR-155 occurs transcriptionally. In reporter assays, miR-155 promoter lacking NF-κB binding sites was no longer activated by LMP1 expression and an intact AP1 site is needed to attain maximum activation. Finally, we demonstrate that LMP1-mediated activation of miR-155 in an EBV-negative background correlates with reduction of protein PU.1, which is a possible miR target.
The reuptake of glutamate in neurons and astrocytes terminates excitatory signals and prevents the persistence of excitotoxic levels of glutamate in the synaptic cleft. This process is inhibited by oxygen radicals and hydrogen peroxide (H2O2). Here we show that another biological oxidant, peroxynitrite (ONOO-), formed by combination of superoxide (O2-) and nitric oxide (NO), potently inhibits glutamate uptake by purified or recombinant high affinity glutamate transporters reconstituted in liposomes. ONOO- reduces selectively the Vmax of transport; its action is fast (reaching > or = 90% within 20 s), dose-dependent (50% inhibition at 50 microM), persistent upon ONOO- (or by product) removal, and insensitive to the presence of the lipid antioxidant vitamin E in the liposomal membranes. Therefore, it likely depends on direct interaction of ONOO- with the glutamate transporters. Three distinct recombinant glutamate transporters from the rat brain, GLT1, GLAST, and EAAC1, exhibit identical sensitivity to ONOO . H2O2 also inhibits reconstituted transport, and its action matches that of ONOO- on all respects; however, this is observed only with 5-10 mM H202 and after prolonged exposure (10 min) in highly oxygenated buffer. NO, released from NO donors (up to 10 mM), does not modify reconstituted glutamate uptake, although in parallel conditions it promotes cGMP formation in synaptosomal cytosolic fraction. Overall, our results suggest that the glutamate transporters contain conserved sites in their structures conferring vulnerability to ONOO- and other oxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.