Despite the critical role of the human microbiota in health, our understanding of microbiota compositional dynamics during and after pregnancy is incomplete. We conducted a case-control study of 49 pregnant women, 15 of whom delivered preterm. From 40 of these women, we analyzed bacterial taxonomic composition of 3,767 specimens collected prospectively and weekly during gestation and monthly after delivery from the vagina, distal gut, saliva, and tooth/ gum. Linear mixed-effects modeling, medoid-based clustering, and Markov chain modeling were used to analyze community temporal trends, community structure, and vaginal community state transitions. Microbiota community taxonomic composition and diversity remained remarkably stable at all four body sites during pregnancy (P > 0.05 for trends over time). Prevalence of a Lactobacillus-poor vaginal community state type (CST 4) was inversely correlated with gestational age at delivery (P = 0.0039). Risk for preterm birth was more pronounced for subjects with CST 4 accompanied by elevated Gardnerella or Ureaplasma abundances. This finding was validated with a set of 246 vaginal specimens from nine women (four of whom delivered preterm). Most women experienced a postdelivery disturbance in the vaginal community characterized by a decrease in Lactobacillus species and an increase in diverse anaerobes such as Peptoniphilus, Prevotella, and Anaerococcus species. This disturbance was unrelated to gestational age at delivery and persisted for up to 1 y. These findings have important implications for predicting premature labor, a major global health problem, and for understanding the potential impact of a persistent, altered postpartum microbiota on maternal health, including outcomes of pregnancies following short interpregnancy intervals.16S rRNA gene | pregnancy | preterm birth | microbiome | premature labor
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. Previous studies have suggested that the maternal vaginal microbiota contributes to the pathophysiology of PTB, but conflicting results in recent years have raised doubts. We conducted a study of PTB compared with term birth in two cohorts of pregnant women: one predominantly Caucasian (n = 39) at low risk for PTB, the second predominantly African American and at high-risk (n = 96). We profiled the taxonomic composition of 2,179 vaginal swabs collected prospectively and weekly during gestation using 16S rRNA gene sequencing. Previously proposed associations between PTB and lower Lactobacillus and higher Gardnerella abundances replicated in the low-risk cohort, but not in the high-risk cohort. High-resolution bioinformatics enabled taxonomic assignment to the species and subspecies levels, revealing that Lactobacillus crispatus was associated with low risk of PTB in both cohorts, while Lactobacillus iners was not, and that a subspecies clade of Gardnerella vaginalis explained the genus association with PTB. Patterns of cooccurrence between L. crispatus and Gardnerella were highly exclusive, while Gardnerella and L. iners often coexisted at high frequencies. We argue that the vaginal microbiota is better represented by the quantitative frequencies of these key taxa than by classifying communities into five community state types. Our findings extend and corroborate the association between the vaginal microbiota and PTB, demonstrate the benefits of high-resolution statistical bioinformatics in clinical microbiome studies, and suggest that previous conflicting results may reflect the different risk profile of women of black race.pregnancy | prematurity | vaginal microbiota | Lactobacillus | Gardnerella P reterm birth (PTB; delivery at <37 gestational wk) affects ≈12% of US births and is the leading cause of neonatal death and morbidity worldwide. Multiple lines of evidence support a role for the indigenous microbial communities of the mother (the maternal microbiota) in the pathophysiology of PTB. Microbial invasion of the amniotic cavity is one of the most frequent causes of spontaneous PTB (1), and the most common invading taxa are consistent with maternal origin (2-4). Bacterial vaginosis (BV), a condition involving an altered vaginal microbiota, has been consistently identified as a risk factor for PTB (5, 6). Multiple studies have also found chronic periodontitis, another condition associated with an altered microbiota, to be a risk factor for PTB (7,8).High-throughput sequencing methods have facilitated new lines of investigation into the microbial etiology of PTB (9, 10). Amplification and high-throughput sequencing of the 16S rRNA gene (metabarcoding) simultaneously measures the presence and relative abundance of thousands of bacterial taxa (composition), and resolves differences to the level of genus and sometimes species or subspecies. To date, metabarcoding studies of the relationship between the vaginal microbiota and PTB have y...
Bacteriophages typically have small genomes 1 and depend on their bacterial hosts for replication 2 . Here we sequenced DNA from diverse ecosystems and found hundreds of phage genomes with lengths of more than 200 kilobases (kb), including a genome of 735 kb, which is-to our knowledge-the largest phage genome to be described to date. Thirty-five genomes were manually curated to completion (circular and no gaps). Expanded genetic repertoires include diverse and previously undescribed CRISPR-Cas systems, transfer RNAs (tRNAs), tRNA synthetases, tRNA-modification enzymes, translation-initiation and elongation factors, and ribosomal proteins. The CRISPR-Cas systems of phages have the capacity to silence host transcription factors and translational genes, potentially as part of a larger interaction network that intercepts translation to redirect biosynthesis to phage-encoded functions. In addition, some phages may repurpose bacterial CRISPR-Cas systems to eliminate competing phages. We phylogenetically define the major clades of huge phages from human and other animal microbiomes, as well as from oceans, lakes, sediments, soils and the built environment. We conclude that the large gene inventories of huge phages reflect a conserved biological strategy, and that the phages are distributed across a broad bacterial host range and across Earth's ecosystems.Phages-viruses that infect bacteria-are considered distinct from cellular life owing to their inability to carry out most biological processes required for reproduction. They are agents of ecosystem change because they prey on specific bacterial populations, mediate lateral gene transfer, alter host metabolism and redistribute bacterially derived compounds through cell lysis 2-4 . They spread antibiotic resistance 5 and disperse pathogenicity factors that cause disease in humans and animals 6,7 . Most knowledge about phages is based on laboratorystudied examples, the vast majority of which have genomes that are a few tens of kb in length. Widely used isolation-based methods select against large phage particles, and they can be excluded from phage concentrates obtained by passage through 100-nm or 200-nm filters 1 . In 2017, only 93 isolated phages with genomes that were more than 200 kb in length were published 1 . Sequencing of whole-community DNA can uncover phage-derived fragments; however, large genomes can still escape detection owing to fragmentation 8 . A new clade of human-and animal-associated megaphages was recently described on the basis of genomes that were manually curated to completion from metagenomic datasets 9 . This finding prompted us to carry out a more-comprehensive analysis of microbial communities to evaluate the prevalence, diversity and ecosystem distribution of phages with large genomes. Previously, phages with genomes of more than 200 kb have been referred to as 'jumbophages' 1 or, in the case of phages with genomes of more than 500 kb, as megaphages 9 . As the set reconstructed here span both size ranges we refer to them simply as 'huge phage...
Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metal-rich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strain-resolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis of microorganisms in the natural environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.