Abstract:We report the first heterologous production of a fungal rutinosidase (6-O-a-l-rhamnopyranosyl-b-d-glucopyranosidase) in Pichia pastoris. The recombinant rutinosidase was purified from the culture medium to apparent homogeneity and biochemically characterized. The enzyme reacts with rutin and cleaves the glycosidic linkage between the disaccharide rutinose and the aglycone. Furthermore, it exhibits high transglycosylation activity, transferring rutinose from rutin as a glycosyl donor onto various alcohols and phenols. The utility of the recombinant rutinosidase was demonstrated by its use for the synthesis of a broad spectrum of rutinosides of primary (saturated and unsaturated), secondary, acyclic and phenolic alcohols as well as for the preparation of free rutinose. Moreover, the a-l-rhamnosidase-catalyzed synthesis of a chromogenic substrate for a rutinosidase assay -para-nitrophenyl b-rutinoside -is described.
Among Accipitriformes sensu stricto, only a few species have been reported to form hybrid zones; these include the red kite Milvus milvus and black kite Milvus migrans migrans. M. milvus is endemic to the western Palearctic and has an estimated total population of 20–24,000 breeding pairs. The species was in decline until the 1970s due to persecution and has declined again since the 1990s due to ingestion of rodenticide-treated baits, illegal poisoning and changes in agricultural practices, particularly in its core range. Whereas F1 M. milvus × M. migr. migrans hybrid offspring have been found, F2 and F3 hybrids have only rarely been reported, with low nesting success rates of F1 hybrids and partial hybrid sterility likely playing a role. Here, we analyzed the mitochondrial (CO1 and CytB) and nuclear (Myc) DNA loci of 184 M. milvus, 124 M. migr. migrans and 3 F1 hybrid individuals collected across central Europe. In agreement with previous studies, we found low heterozygosity in M. milvus regardless of locus. We found that populations of both examined species were characterized by a high gene flow within populations, with all of the major haplotypes distributed across the entire examined area. Few haplotypes displayed statistically significant aggregation in one region over another. We did not find mitochondrial DNA of one species in individuals with the plumage of the other species, except in F1 hybrids, which agrees with Haldane´s Rule. It remains to be investigated by genomic methods whether occasional gene flow occurs through the paternal line, as the examined Myc gene displayed only marginal divergence between M. milvus and M. migr. migrans. The central European population of M. milvus is clearly subject to free intraspecific gene flow, which has direct implications when considering the origin of individuals in M. milvus re-introduction programs.
α‐l‐Rhamnosidases cleave terminal nonreducing α‐l‐rhamnosyl residues from many natural rhamnoglycosides. This makes them catalysts of interest for various biotechnological applications. The X‐ray structure of the GH78 family α‐l‐rhamnosidase from Aspergillus terreus has been determined at 1.38 Å resolution using the sulfur single‐wavelength anomalous dispersion phasing method. The protein was isolated from its natural source in the native glycosylated form, and the active site contained a glucose molecule, probably from the growth medium. In addition to its catalytic domain, the α‐l‐rhamnosidase from A. terreus contains four accessory domains of unknown function. The structural data suggest that two of these accessory domains, E and F, might play a role in stabilizing the aglycon portion of the bound substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.