The generation of endothelial progenitor cells (EPCs) from blood monocytes has been propagated as a novel approach in the diagnosis and treatment of cardiovascular diseases. Low-density lipoprotein (LDL) uptake and lectin binding together with endothelial marker expression are commonly used to define these EPCs. Considerable controversy exists regarding their nature, in particular, because myelomonocytic cells share several properties with endothelial cells (ECs). This study was performed to elucidate whether the commonly used endothelial marker determination is sufficient to distinguish supposed EPCs from monocytes. We measured endothelial, hematopoietic, and progenitor cell marker expression of monocytes before and after angiogenic culture by fluorescence microscopy, flow cytometry, and real-time reverse transcription-polymerase chain reaction. The function of primary monocytes and monocytederived supposed EPCs was investigated during vascular network formation and EC colony-forming unit (CFU-EC) development. Monocytes cultured for 4 to 6 days under angiogenic conditions lost CD14/CD45 and displayed a commonly accepted EPC phenotype, including LDL uptake and lectin binding, CD31/CD105/CD144 reactivity, and formation of cord-like structures. Strikingly, primary monocytes already expressed most tested endothelial genes and proteins at even higher levels than their supposed EPC progeny. Neither fresh nor cultured monocytes formed vascular networks, but CFU-EC formation was strictly dependent on monocyte presence. LDL uptake, lectin binding, and CD31/CD105/CD144 expression are inherent features of monocytes, making them phenotypically indistinguishable from putative EPCs. Consequently, monocytes and their progeny can phenotypically mimic EPCs in various experimental models. STEM CELLS 2006;24:357-367
Adult mesenchymal stem cells (MSCs) are considered as valuable mediators for tissue regeneration and cellular therapy. This study was performed to develop conditions for regularly propagating a clinical quantity of > 2 x 10(8) MSCs without animal serum from small bone marrow (BM) aspiration volumes within short time. We established optimized culture conditions with pooled human platelet lysate (pHPL) replacing fetal bovine serum (FBS) for MSC propagation. MSC quality, identity, purity, and function were assessed accordingly. Biologic safety was determined by bacterial/fungal/mycoplasma/endotoxin testing and genomic stability by array comparative genomic hybridization (CGH). We demonstrate that unmanipulated BM can be used to efficiently initiate MSC cultures without the need for cell separation. Just diluting 1.5-5 mL heparinized BM per 500 mL minimum essential medium supplemented with L-glutamine, heparin, and 10% pHPL sufficiently supported the safe propagation of 7.8 +/- 1.5 x 10(8) MSCs within a single 11- to 16-day primary culture under defined conditions. This procedure also resulted in sustained MSC colony recovery. MSC purity, immune phenotype, and in vitro differentiation potential fully matched current criteria. Despite high proliferation rate, MSCs showed genomic stability in array CGH. This easy single-phase culture procedure can build the basis for standardized manufacturing of MSC-based therapeutics under animal serum-free conditions for dose-escalated cellular therapy and tissue engineering.
A high MCA MBF velocity index on TCD after successful recanalization therapy for anterior circulation stroke indicates a risk for postinterventional ICH and worse prognosis.
The translocation t(8;16)(p11;p13) is associated with acute myeloid leukemia displaying monocytic differentiation (AML FAB M4/5) and fuses the MOZ (also named MYST3) gene (8p11) with the CBP (also named CREBBP) gene (16p13). Detection of the chimeric RNA fusions has proven difficult; only three studies have described successful amplification of the chimeric MOZ-CBP and CBP-MOZ fusions by reverse transcriptasepolymerase chain reaction (RT-PCR). We analyzed four cases of AML M4/5 with t(8;16)(p11;p13) by RT-PCR and fluorescence in situ hybridization (FISH) and characterized the reciprocal RNA fusions from three cases. We cloned both genomic translocation breakpoints from one case by long-range PCR and successfully applied RT-PCR to monitor minimal residual disease (MRD) between clinical complete remission and relapse. In three cases, the genomic breakpoints occurred in MOZ intron 16 and CBP intron 2. In one case, no fusion transcript was detected. The available data suggest clustering of t(8;16)(p11;p13) breakpoints in these introns leading to reciprocal in-frame MOZ exon 16/CBP exon 3 and in-frame CBP exon 2/MOZ exon 17 chimeric transcripts in the majority of cases. The described RT-PCR strategy may be valuable both for the routine detection of the t(8;16)(p11;p13) as well as for monitoring of MRD in this prognostically unfavorable patient group.
Background and Purpose— Hemodynamic changes following mechanical thrombectomy for large vessel occlusion stroke could be associated with complications and might affect prognosis. We investigated postinterventional middle cerebral artery blood flow on transcranial duplex sonography (TCD) and its prognostic value for anterior large vessel occlusion stroke patients. Methods— We identified all ischemic stroke patients who had undergone mechanical thrombectomy for anterior circulation large vessel occlusion from 2010 onwards. Postinterventional middle cerebral artery flow was graded according to the sonographic Thrombolysis in Brain Ischemia score and related to patient outcome stratified by the angiographic Thrombolysis in Cerebral Infarction reperfusion status. Results— Of 215 large vessel occlusion stroke patients, 193 patients (90%) showed successful angiographic recanalization (Thrombolysis in Cerebral Infarction grade 2b-3). Of those, 69 (36%) patients had abnormal sonographic middle cerebral artery blood flow (Thrombolysis in Brain Ischemia grade 0–4) within 72 hours after mechanical thrombectomy, which was an independent predictor for poor 90-day outcome. Conclusions— TCD indicates abnormal middle cerebral artery hemodynamics in a substantial proportion of patients with angiographically defined successful mechanical thrombectomy of the anterior cerebral circulation. Such changes are associated with poor short-term outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.