The β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia, are caused by mutations in the β-globin gene (HBB) and affect millions of people worldwide. A curative strategy for the β-hemoglobinopathies would be ex vivo gene correction in patient-derived hematopoietic stem cells (HSCs) followed by autologous transplantation. Here we report the first CRISPR/Cas9 gene-editing platform for achieving homologous recombination (HR) at the HBB gene in HSCs by combining Cas9 ribonucleoproteins and rAAV6 HR donor delivery. Notably, we devise an enrichment paradigm to purify a population of HSPCs with >90% targeted integration. We also show efficient correction of the SCD-causing E6V mutation in patient-derived HSPCs that after differentiation into erythrocytes, express adult β-globin (HbA) mRNA, confirming intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting HSCs by HR at the HBB locus to advance the development of next generation therapies for β-hemoglobinopathies.
Summary
Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation towards cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis.
Replacing FBS with HPL prevents bovine prion, viral, and zoonose contamination of the stem cell product. This new efficient FBS-free two-step procedure for clinical-scale MSC propagation may represent a major step toward challenging new stem cell therapies.
Key Points
Epigenetics and in vivo behavior can distinguish MSCs from different sources. BM-derived MSCs form a hematopoietic niche via a vascularized cartilage intermediate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.