CRISPR-Cas-mediated genome editing relies on guide RNAs that direct site-specific DNA cleavage facilitated by the Cas endonuclease. Here we report that chemical alterations to synthesized single guide RNAs (sgRNAs) enhance genome editing efficiency in human primary T cells and CD34+ hematopoietic stem and progenitor cells. Co-delivering chemically modified sgRNAs with Cas9 mRNA or protein is an efficient RNA- or ribonucleoprotein (RNP)-based delivery method for the CRISPR-Cas system, without the toxicity associated with DNA delivery. This approach is a simple and effective way to streamline the development of genome editing with the potential to accelerate a wide array of biotechnological and therapeutic applications of the CRISPR-Cas technology.
Oncogenes are activated through well-known chromosomal alterations, including gene fusion, translocation and focal amplification. Recent evidence that the control of key genes depends on chromosome structures called insulated neighborhoods led us to investigate whether proto-oncogenes occur within these structures and if oncogene activation can occur via disruption of insulated neighborhood boundaries in cancer cells. We mapped insulated neighborhoods in T-cell acute lymphoblastic leukemia (T-ALL), and found that tumor cell genomes contain recurrent microdeletions that eliminate the boundary sites of insulated neighborhoods containing prominent T-ALL proto-oncogenes. Perturbation of such boundaries in non-malignant cells was sufficient to activate proto-oncogenes. Mutations affecting chromosome neighborhood boundaries were found in many types of cancer. Thus, oncogene activation can occur via genetic alterations that disrupt insulated neighborhoods in malignant cells.
The β-hemoglobinopathies, including sickle cell disease (SCD) and β-thalassemia, are caused by mutations in the β-globin gene (HBB) and affect millions of people worldwide. A curative strategy for the β-hemoglobinopathies would be ex vivo gene correction in patient-derived hematopoietic stem cells (HSCs) followed by autologous transplantation. Here we report the first CRISPR/Cas9 gene-editing platform for achieving homologous recombination (HR) at the HBB gene in HSCs by combining Cas9 ribonucleoproteins and rAAV6 HR donor delivery. Notably, we devise an enrichment paradigm to purify a population of HSPCs with >90% targeted integration. We also show efficient correction of the SCD-causing E6V mutation in patient-derived HSPCs that after differentiation into erythrocytes, express adult β-globin (HbA) mRNA, confirming intact transcriptional regulation of edited HBB alleles. Collectively, these preclinical studies outline a CRISPR-based methodology for targeting HSCs by HR at the HBB locus to advance the development of next generation therapies for β-hemoglobinopathies.
Translation of the CRISPR-Cas9 system to human therapeutics holds high promise. However, specificity remains a concern especially when modifying stem cell populations. We show that existing rationally engineered Cas9 high-fidelity variants have reduced on-target activity when using the therapeutically relevant ribonucleoprotein (RNP) delivery method. Therefore, we devised an unbiased bacterial screen to isolate variants that retain activity in the RNP format. Introduction of a single point mutation, p.R691A, in Cas9 (high-fidelity (HiFi) Cas9) retained the high on-target activity of Cas9 while reducing off-target editing. HiFi Cas9 induces robust AAV6-mediated gene targeting at five therapeutically relevant loci (HBB, IL2RG, CCR5, HEXB, and TRAC) in human CD34 hematopoietic stem and progenitor cells (HSPCs) as well as primary T cells. We also show that HiFi Cas9 mediates high-level correction of the sickle cell disease (SCD)-causing p.E6V mutation in HSPCs derived from patients with SCD. We anticipate that HiFi Cas9 will have wide utility for both basic science and therapeutic genome-editing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.