Abstract. In Italy, rainfall is the primary trigger of landslides that frequently cause fatalities and large economic damage. Using a variety of information sources, we have compiled a catalogue listing 753 rainfall events that have resulted in landslides in Italy. For each event in the catalogue, the exact or approximate location of the landslide and the time or period of initiation of the slope failure is known, together with information on the rainfall duration D, and the rainfall mean intensity I , that have resulted in the slope failure. The catalogue represents the single largest collection of information on rainfall-induced landslides in Italy, and was exploited to determine the minimum rainfall conditions necessary for landslide occurrence in Italy, and in the Abruzzo Region, central Italy. For the purpose, new national rainfall thresholds for Italy and new regional rainfall thresholds for the Abruzzo Region were established, using two independent statistical methods, including a Bayesian inference method and a new Frequentist approach. The two methods proved complementary, with the Bayesian method more suited to analyze small data sets, and the Frequentist method performing better when applied to large data sets. The new regional thresholds for the Abruzzo Region are lower than the new national thresholds for Italy, and lower than the regional thresholds proposed in the literature for the Piedmont and Lombardy Regions in northern Italy, and for the Campania Region in southern Italy. This is important, because it shows that landslides in Italy can be triggered by less severe rainfall conditions than previously recognized. The Frequentist method experimented in this work allows for the definition of multiple minimum rainfall thresholds, each based on a different exceedance probability level. This makes the thresholds suited for the design of probabilistic schemes for the prediction of rainfall-induced landslides. A scheme based on four probabilistic thresholds is proposed. The four threshCorrespondence to: M. T. Brunetti (mariateresa.brunetti@irpi.cnr.it) olds separate five fields, each characterized by different rainfall intensity-duration conditions, and corresponding different probability of possible landslide occurrence. The scheme can be implemented in landslide warning systems that operate on rainfall thresholds, and on precipitation measurements or forecasts.
A seismic sequence in central Italy from August 2016 to January 2017 affected groundwater dynamics in fractured carbonate aquifers. Changes in spring discharge, water-table position, and streamflow were recorded for several months following nine Mw 5.0-6.5 seismic events. Data from 22 measurement sites, located within 100 km of the epicentral zones, were analyzed. The intensity of the induced changes were correlated with seismic magnitude and distance to epicenters. The additional post-seismic discharge from rivers and springs was found to be higher than 9 m 3 /s, totaling more than 0.1 km 3 of groundwater release over 6 months. This huge and unexpected contribution increased streamflow in narrow mountainous valleys to previously unmeasured peak values. Analogously to the L'Aquila 2009 postearthquake phenomenon, these hydrogeological changes might reflect an increase of bulk hydraulic conductivity at the aquifer scale, which would increase hydraulic heads in the discharge zones and lower them in some recharge areas. The observed changes may also be partly due to other mechanisms, such as shaking and/or squeezing effects related to intense subsidence in the core of the affected area, where effects had maximum extent, or breaching of hydraulic barriers.
A sustained increase in spring discharges was monitored after the 2016 Central Italy seismic sequence in the fractured carbonate aquifer of Valnerina-Sibillini Mts. The groundwater surplus recorded between August 2016 and November 2017 was determined to be between 400 and 500 × 10 6 m 3 . In fractured aquifers, the post-seismic rise in spring discharges is generally attributed to an increase in bulk permeability caused by the fracture cleaning effect, which is induced by pore pressure propagation. In the studied aquifers, the large amount of additional discharge cannot only be attributed to the enhanced permeability, which was evaluated to be less than 20% after each main seismic event. A detailed analysis of the spring discharge hydrographs and of the water level at five gauging stations was carried out to determine the possible causes of this sudden increase in groundwater outflow. Taking into account the geological and structural framework, a conceptual model of a basin-in-series has been adopted to describe the complex hydrogeological setting, where the thrusts and extensional faults have clearly influenced the groundwater flow directions before and after the seismic sequence. The prevalent portion of the total postseismic discharge surplus not explained by the increase in permeability has been attributed to changes in the hydraulic gradient that caused seismogenic fault rupture and the disruption in the upgradient sector of the aquifer. The additional flow calculated through the breach of the pre-existing hydrostructural barrier corresponds to approximately 470 × 10 6 m 3 . This value is consistent with the total discharge increase measured in the whole study area, validating the proposed conceptual model. Consequently, a shift in the piezometric divide of the hydrogeological system has been induced, causing a potentially permanent change that lowers the discharge amount of the eastern springs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.