The field of nanoscience is expected to make significant contributions to contemporary medicine by providing unique solutions to critical problems. These solutions require the design of hybrid materials/systems with new properties and functionalities. This review focuses on spherical polymer nanocompartments (capsules and vesicles) and describes their potential in a wide variety of medical applications that range from passive drug carriers to active nanoreactors to artificial organelles. Here, we place emphasis on the complex requirements that a polymer assembly must fulfill for consideration in the medical domain. In terms of stability and chemical diversity, synthetic polymer compartments are superior to currently marketed liposomes, thereby supporting their modification for targeting approaches, stimuli-responsiveness, and multifunctionality. The authors present the latest concepts and examples based on the encapsulation/entrapment of biomolecules (e.g., enzymes and proteins) for the development of active nanosystems for application in the medical domain.
In modern medicine, effective protein therapy is a major challenge to which a significant contribution can be expected from nanoscience through the development of novel delivery systems. Here we present the effect of the amine content of nanoparticles based on PEGylated chitosan Bombyx mori (PEG-O-ChsBm) copolymers on the entrapment of molecules in a search for highly efficient nanocarriers. PEG-O-ChsBm copolymers were synthesized with amine contents from 1.12% to 0.70%, and nanoparticles were generated by self-assembly in dilute aqueous solutions. These nanoparticles successfully entrapped molecules with a wide range of sizes, the efficiency of which was dependent on their amine contents. While hydrophobic molecules were entrapped with high efficiency in all types of nanoparticle, hydrophilic molecules were entrapped only in those with low amine content. Bovine serum albumin, selected as a model protein, was entrapped in nanoparticles and efficiently released in acidic conditions. The triggered entrapment of molecules in PEG-O-ChsBm nanoparticles by selection of the appropriate amine content represents a straightforward way to modulate their delivery by fine changes in the properties of nanocarriers.
When polymeric nanoparticles (NPs) are formed by nanoprecipitation, which is a nucleation-growth process, the control over size requires changing the polymer concentration or solvent composition. Here, we demonstrate that the NP size can be controlled independent of polymer variables by introducing a polyelectrolyte (PE) in the aqueous phase. PEs that exhibit hydrogen bonding (H-bonding) yield a reduction in NP size, whereas PEs that do not possess this characteristic promote the formation of larger NPs. The observed effect can be attributed to the formation of a diffusional barrier around the NP in the form of a dense shell. This principle of controlling NP size is not limited to polymers and can also be employed in the production of lipid NPs.
Designing nanocarriers to release proteins under specific conditions is required to improve therapeutic approaches, especially in treating cancer and protein deficiency diseases. We present here supramolecular assemblies based on asymmetric poly(ethylene glycol)-b-poly(methylcaprolactone)-b-poly(2-(N,Ndiethylamino)ethyl methacrylate) (PEG-b-PMCL-b-PDMAEMA) copolymers for controlled localization and pH-sensitive release of proteins. Copolymers self-assembled in soft nanoparticles with a core domain formed by PMCL, and a hydrophilic domain based on PEG mainly embedded inside, and the branched PDMAEMA exposed at the particle surface. We selected as model proteins to be attached to the nanoparticles bovine serum albumin (BSA) and acid sphingomyelinase (ASM), the latter being an ideal candidate for protein replacement therapy. The hydrophilic/hydrophobic ratio, nanoparticle size, and the nature of biomolecules are key factors for modulating protein localization and attachment efficiency. The predominant outer shell of PDMAEMA allows efficient pH-triggered release of BSA and ASM, and in acidic conditions >70% of the bound proteins were released. Uptake of protein-attached nanoparticles by HELA cells, together with low toxicity and pH-responsive release, supports such protein-bound nanoparticles as efficient stimuli-responsive candidates for protein therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.