With the aim of developing new tools for the characterisation of wine yeasts, by means of databases available on-line we scanned the genome of Saccharomyces cerevisiae in search of potentially polymorphic targets. As we have previously observed for SED1, we found that other genes coding for cell wall proteins contain minisatellite-like sequences. A polymerase chain reaction (PCR) survey of SED1 and three of these others, namely AGA1, DAN4 and HSP150, in a population of wild S. cerevisiae demonstrated that these genes are highly polymorphic in length and represent a sink of unexplored genetic variability. The primer pairs designed on the gene open reading frames yield stable and repeatable amplification profiles that show a level of resolution that allows the clear discriminate between different strains. These can therefore be utilised for PCR-based typing of S. cerevisiae.
To further elucidate the biosynthesis of lipids in flor strains under fermentative conditions, the transcription levels of the lipid biosynthetic genes ACS1, ACS2, ACC1, OLE1, ERG1, ERG11, ARE1 and ARE2, as well as the lipid composition and cell viability of a flor strain were compared with that of a non-flor strain during hypoxic and aerobic fermentations in the absence of lipid nutrients. While no significant differences in transcription levels or lipid compositions were observed between the two strains when oxygen was not limiting, significant differences were seen during hypoxic fermentation. In this last condition, the flor strain, in spite of higher levels of transcription of hypoxic genes, lost the abilities to desaturate fatty acids and complete ergosterol biosynthesis, and showed a dramatic loss of viability. In contrast, the non-flor strain, which showed lower transcription levels, was able to reach a balanced lipid composition and maintained a higher cell viability. One possible explanation is that the flor strain requires a higher amount of oxygen than the non-flor strain in order to carry out the oxygen-dependent steps of lipid biosynthesis under fermentative conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.