Three new thiazolo[5,4-d]thiazole-based organic dyes have been designed and synthesized for employment as DSSC sensitizers. Alternation of the electron poor thiazolothiazole unit with two propylenedioxythiophene (ProDOT) groups ensured very intense light absorption in the visible region (ε up to 9.41 × 10(4) M(-1) cm(-1) in THF solution). The dyes were particularly suitable for application in transparent and opaque thin-layer DSSCs (TiO2 thickness: 5.5-6.5 μm, efficiencies up to 7.71%), thus being good candidates for production of solar cells under simple fabrication conditions.
Herein we analyze experimentally the effect that introducing highly reflecting photonic crystals, operating at different spectral ranges, has on the conversion efficiency of dye sensitized solar cells. The interplay between structural colour and cell performance is discussed on the basis of the modified spectral response of the photogenerated current observed and the optical characterization of the cells. We demonstrate that, with the approach herein discussed, it is possible to achieve relatively high efficiencies using thin electrodes while preserving transparency. At the same time, the appearance of the device can be controllably modified, which is of relevance for their potential application in building integrated photovoltaics (BIPV) as window modules
A small set of thiazolo[5,4-d]thiazole-based D-π-A organic dyes, endowed with bis-pentylpropylenedioxythiophene (ProDOT) moieties in the π-spacer, was designed with the aid of computational analysis, synthesized and characterized. The presence of bulky and electronrich ProDOT groups beside the electronpoor thiazolothiazole unit induced optimal physico-chemical properties, including broad and intense visible light absorption. As a consequence, the dyes resulted particularly suitable for application in thin layer dye-sensitized solar cells (TiO2 thickness: 3.0-6.5 µm). Small-scale (0.25 cm2) devices prepared using standard materials and fabrication techniques gave power conversion efficiencies up to 7.71%, surpassing those obtained with two different reference dyes. Transparent larger area cells (3.6 cm2) also showed good η values up to 6.35%, not requiring the use of a co-adsorbent, and retained their initial efficiency over a period of 1000 h storage at 85°C. These results make this new family of organic sensitizers promising candidates for successful application in the production of efficient and stable transparent DSSCs for building-integrated photovoltaics
Phthalocyanines based-dyes represent attractive alternatives to the expensive and polluting pyridyl based Ru complexes because of their photochemical and thermal stability, they do show in fact intense absorption in the UV/blue (Soret band) and the red/near IR (Q band) spectral regions and appear very promising as sensitizer dyes for DSSC. In this contribution we review the state of the art and the recent progress in the application of these materials as dyes for DSSC and present three new dyes which are bridged derivatives of Iron phthalocyanine. Synthesis, optical properties, electrochemical characterization and device performances are discussed with regard to the different substitution degree of the macrocycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.