Since seed coating with neonicotinoid insecticides was introduced in the late 1990s, European beekeepers have reported severe colony losses in the period of corn sowing (spring). As a consequence, seed-coating neonicotinoid insecticides that are used worldwide on corn crops have been blamed for honeybee decline. In view of the currently increasing crop production, and also of corn as a renewable energy source, the correct use of these insecticides within sustainable agriculture is a cause of concern. In this paper, a probable--but so far underestimated--route of environmental exposure of honeybees to and intoxication with neonicotinoid insecticides, namely, the atmospheric emission of particulate matter containing the insecticide by drilling machines, has been quantitatively studied. Using optimized analytical procedures, quantitative measurements of both the emitted particulate and the consequent direct contamination of single bees approaching the drilling machine during the foraging activity have been determined. Experimental results show that the environmental release of particles containing neonicotinoids can produce high exposure levels for bees, with lethal effects compatible with colony losses phenomena observed by beekeepers.
Losses of honeybees have been reported in Italy concurrent with the sowing of corn coated with neonicotinoids using a pneumatic drilling machine. Being unconvinced that solid particles containing systemic insecticide, falling on the vegetation surrounding the sown area, could poison bees foraging on contaminated nectar and pollen, the effect of direct aerial powdering was tested on foragers in free flight near the drilling machine. Bees were conditioned to visit a dispenser of sugar solution whilst a drilling machine was sowing corn along the flight path. Samples of bees were captured on the dispenser, caged and held in the laboratory. Chemical analysis showed some hundred nanograms of insecticide per bee. Nevertheless, caged bees, previously contaminated in flight, died only if kept in conditions of high humidity. After the sowing, an increase in bee mortality in front of the hives was also observed. Spring bee losses, which corresponded with the sowing of corn-coated seed, seemed to be related to the casual encountering of drilling machine during foraging flight across the ploughed fields
Regarding the hypothesis that neonicotinoid insecticides used for seed coating of agricultural crops - mainly corn, sunflower and seed rape - are related to the extensive death of honey bees, the phenomenon of corn seedling guttation has been recently considered as a possible route of exposure of bees to these systemic insecticides. In the present study, guttation drops of corn plants obtained from commercial seeds coated with thiamethoxam, clothianidin, imidacloprid and fipronil have been analyzed by an optimized fast UHPLC-DAD procedure showing excellent detection limits and accuracy, both adequate for the purpose. The young plants grown both in pots - in greenhouse - and in open field from coated seeds, produced guttation solutions containing high levels of the neonicotinoid insecticides (up to 346 mg L(-1) for imidacloprid, 102 mg L(-1) for clothianidin and 146 mg L(-1) for thiamethoxam). These concentration levels may represent lethal doses for bees that use guttation drops as a source of water. The neonicotinoid concentrations in guttation drops progressively decrease during the first 10-15 days after the emergence of the plant from the soil. Otherwise fipronil, which is a non-systemic phenylpyrazole insecticide, was never detected into guttation drops. Current results confirm that the physiological fluids of the corn plant can effectively transfer neonicotinoid insecticides from the seed onto the surface of the leaves, where guttation drops may expose bees and other insects to elevated doses of neurotoxic insecticides.
Sudden losses of bees have been observed in spring during maize sowing. The death of bees has been correlated with the use of neonicotinoid-coated seed and the toxic particulates emitted by pneumatic drilling machines. The contamination of foragers in flight over the ploughed fields has been hypothesized. The airborne contamination has been proven, both with bees inside fixed cages around the field and in free flight near the driller. A new trial involving mobile cages has been established and consists of making rapid passes with single bees inside cages fixed to an aluminium bar. The bar was moved by two operators at different distances from the working drilling machine. A single pass was shown as sufficient to kill all the bees exposed to exhaust air on the emission side of the drill, when bees were subsequently held in high relative humidity. The extent of toxic cloud around driller was evaluated at the height of 0.5, 1.8 and 3.5 m and proved to be about 20 m in diameter, with an ellipsoidal shape. The shape may be influenced by working speed of the drill and environmental parameters, and is easily shown by adding talc powder to the seed in the machine hopper. A new driller equipment was evaluated consisting of two tubes inclined towards the soil that direct the exhaust air towards the ground. The survival rate of the bees was not substantially increased using the modified drill and was lower than 50%. Chemical analyses show up to 4000 ng of insecticide in single bees with an average content around 300 ng. Similar quantities were observed at increased distances from the modified or unmodified drillers. This new evaluation of bee mortality in the field is an innovative biological test to verify the hypothetical efficiency (or not) of driller modifications
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.