Background
Domesticated and wild swine play an important role as reservoir hosts of Trichinella spp. and a source of infection for humans. Little is known about the survival of Trichinella larvae in muscles and the duration of anti-Trichinella antibodies in pigs with long-lasting infections.
Methods
Sixty pigs were divided into three groups of 20 animals and infected with 10,000 larvae of Trichinella spiralis, Trichinella britovi or Trichinella pseudospiralis. Four pigs from each group were sacrificed at 2, 6, 12, 18 and 24 months post-infection (p.i.) and the number of larvae per gram (LPG) of muscles was calculated. Serum samples were tested by ELISA and western blot using excretory/secretory (ES) and crude antigens.
Results
Trichinella spiralis showed the highest infectivity and immunogenicity in pigs and larvae survived in pig muscles for up to 2 years p.i. In these pigs, the IgG level significantly increased at 30 days p.i. and reached a peak at about 60 days p.i., remaining stable until the end of the experiment. In T. britovi-infected pigs, LPG was about 70 times lower than for T. spiralis at 2 months p.i. and only very few infecting larvae were detected at 6 months p.i., whereas no larvae were detected at 12, 18 and 24 months p.i. At 6 months p.i., degenerated/calcified larvae and cysts were detected in the muscles by trichinoscopy and histology. The IgG pattern showed by T. britovi-infected pigs was similar to that of T. spiralis-infected pigs, although seroconversion occurred some days later. The larval burden of T. pseudospiralis was slightly greater than for T. britovi at 2 months p.i., but no larvae were detected at 6 and 12 months p.i. In T. pseudospiralis-infected pigs, seroconversion occurred slowly, as in T. britovi-infected pigs. The IgG level showed a significant drop at 6 months p.i. and declining to the cut-off value at 12 months p.i.
Conclusions
The longer survival of T. spiralis in pigs in comparison with the other two species highlights its exceptional dissemination potential. These results provide an explanation of the controversial data collected by parasitological and serological tools in the course of epidemiological investigations.
BackgroundTrichinellosis is a meat-borne zoonotic disease caused by parasites of the genus Trichinella. To date, 12 taxa have been described. The identification of Trichinella species is crucial in order to identify the possible source of infection, the geographical origin of the parasite and to assess risk of infection for domestic pigs and humans. Specific identification of the etiological agent is not always feasible using direct methods since the source of infection can be untraceable. The aim of this study was to develop a diagnostic tool to infer the causative Trichinella species using western blot patterns of sera derived from infected animal and human hosts.MethodsSera from mice experimentally infected with Trichinella spiralis, Trichinella britovi, Trichinella pseudospiralis and Trichinella papuae were tested by western blot using homologous and heterologous crude worm extracts (CWE) and a highly sensitive detection system based on chemiluminescence. In addition, sera from pigs experimentally infected with T. spiralis, T. britovi and T. pseudospiralis and from patients with confirmed T. spiralis, T. britovi and T. pseudospiralis infections, were also included.ResultsSera from mice infected with one Trichinella species reacted with CWE proteins from all four investigated species. Likewise, sera derived from pigs and humans infected with one Trichinella species reacted with CWE proteins from all the three investigated species. Using T. spiralis CWE, sera from T. pseudospiralis-infected hosts yielded a characteristic pattern of reactivity using Wb, which differed to that produced by T. spiralis/T. britovi- or T. papuae-infected host sera.ConclusionsThe present study suggests that western blot using T. spiralis CWE may be a useful tool to distinguish Trichinella infections caused by T. pseudospiralis from those caused by T. spiralis or T. britovi. This method may support epidemiological investigations, particularly when the source of infection is not traceable.Electronic supplementary materialThe online version of this article (10.1186/s13071-018-3244-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.