Rapid population growth and coastal development are primary drivers of marine habitat degradation. Although shoreline hardening or armoring (the addition of concrete structures such as seawalls, jetties, and groins), a byproduct of development, can accelerate erosion and loss of beaches and tidal wetlands, it is a common practice globally. Here, we provide the first estimate of shoreline hardening along US Pacific, Atlantic, and Gulf of Mexico coasts and predict where future armoring may result in tidal wetland loss if coastal management practices remain unchanged. Our analysis indicates that 22 842 km of continental US shoreline -approximately 14% of the total US coastline -has been armored. We also consider how socioeconomic and physical factors relate to the pervasiveness of shoreline armoring and show that housing density, gross domestic product, storms, and wave height are positively correlated with hardening. Over 50% of South Atlantic and Gulf of Mexico coasts are fringed with tidal wetlands that could be threatened by future hardening, based on projected population growth, storm frequency, and an absence of coastal development restrictions.
In the high-salinity seaward portions of estuaries, oysters seek refuge from predation, competition and disease in intertidal areas 1,2 , but this sanctuary will be lost if vertical reef accretion cannot keep pace with sea-level rise (SLR). Oyster-reef abundance has already declined ∼85% globally over the past 100 years, mainly from over harvesting 3,4 , making any additional losses due to SLR cause for concern. Before any assessment of reef response to accelerated SLR can be made, direct measures of reef growth are necessary. Here, we present direct measurements of intertidal oyster-reef growth from cores and terrestrial lidar-derived digital elevation models. On the basis of our measurements collected within a mid-Atlantic estuary over a 15-year period, we developed a globally testable empirical model of intertidal oyster-reef accretion. We show that previous estimates of vertical reef growth, based on radiocarbon dates and bathymetric maps 5,6 , may be greater than one order of magnitude too slow. The intertidal reefs we studied should be able to keep up with any future accelerated rate of SLR (ref. 7) and may even benefit from the additional subaqueous space allowing extended vertical accretion.Oyster-reef communities (Crassostrea virginica) provide numerous ecosystem services, including production of oysters, water filtration 8,9 , provision of habitat for fishes and crustaceans 10 , shoreline stabilization 11,12 , and maintenance of estuarine-water alkalinity 13 . In the face of natural and anthropogenic stressors, such as harvesting, degrading water quality, increasing rates of SLR, warming, disease, ocean acidification, and parasitism, reef habitats and associated services are becoming unsustainable. Loss of these reefs in estuaries that otherwise lack alternative hard substrates is a global problem 4 . SLR, in particular, threatens oyster reefs in the high-salinity seaward portions of estuaries because there, oysters seek refuge from biofouling (space competition), predation and disease in intertidal areas 1,2 . The importance of the intertidal area to individual oyster growth in lower estuaries is apparent from experimental work that has shown intertidal oysters grow 34% faster and exhibit an order of magnitude less fouling (percentage cover) than subtidal oysters 14 . Constructed subtidal reefs in no-harvest sanctuaries (North Carolina, USA) were also found to have few, if any, live oysters (mean density of 0-92 live oysters m −2 ) after six years in euhaline waters, whereas intertidal reefs faired significantly better (200-225 live oysters m −2 ; ref. 15). Restoration is a common mitigation option for historic oyster-reef loss, but project success with accelerating SLR will depend on a reef 's ability to maintain an intertidal position. Model simulations presume that reef-accretion rates cannot exceed the rate of SLR, but parameterizations are not verified with direct measures of reef-scale growth 16,17 . Without direct measures of reef-scale growth, our ability to assess restoration and conservation ...
Summary1. Gradients in competition and predation that regulate communities should guide biogenic habitat restoration, while restoration ecology provides opportunities to address fundamental questions regarding food web dynamics via large-scale field manipulations. 2. We restored oyster reefs across an aerial exposure gradient (shallow-subtidal-tomid-intertidal) to explore how vertical gradients in natural settlement, growth and interspecific interactions affected the trajectory of man-made shellfish reefs. 3. We recorded nearly an order-of-magnitude higher oyster settlement on the deepest (subtidal) reefs, but within a year abundance patterns reversed, and oyster densities were ultimately highest on the shallowest (intertidal) reefs by over an order-of-magnitude. 4. This reversal was due to (i) significantly elevated survivorship on intertidal reefs and (ii) larger surviving oysters on intertidal reefs. These patterns are likely to have developed from greater levels of biofouling and predator abundance (e.g. stone crabs, gastropods) on deeper reefs where aerial exposure was <5% of the monthly tidal cycle. 5. Synthesis and applications. The success of restoration initiatives involving habitat-forming species can be enhanced by accounting for the biotic interactions that regulate population fitness. In littoral systems, vertical gradients in predation, competition and disturbance can be exploited to guide restoration of vegetated (e.g. mangrove, seagrass) or biogenic reef habitats. In particular, our results demonstrate that paradigms of vertical zonation learned from the rocky intertidal and saltmarshes also describe the fate of restored shellfish reefs. As with rocky shores, the lower vertical limit of adult oyster distribution in our study system was most likely driven by predatory and competitive (i.e. smothering) interactions, with a threshold depth at c. 5% daily aerial exposure. Below this depth, experimentally restored reefs failed completely. As with Spartina saltmarsh, accumulation of oyster biomass was greatest at an intermediate vertical position relative to mean sea level (i.e. mid-to-low intertidal). Our developing model proscribes a vertical 'hot spot' for restoration efforts to maximize biogenic reef fitness and production.
Ecologists have long been interested in identifying and testing factors that drive top-down or bottom-up regulation of communities. Most studies have focused on factors that directly exert top-down (e.g., grazing) or bottom-up (e.g., nutrient availability) control on primary production. For example, recent studies in salt marshes have demonstrated that fronts of Littoraria irrorata periwinkles can overgraze Spartina alterniflora and convert marsh to mudflat. The importance of indirect, bottom-up effects, particularly facilitation, in enhancing primary production has also recently been explored. Previous field studies separately revealed that fiddler crabs, which burrow to depths of more than 30 cm, can oxygenate marsh sediments and redistribute nutrients, thereby relieving the stress of anoxia and enhancing S. alterniflora growth. However, to our knowledge, no studies to date have explored how nontrophic facilitators can mediate top-down effects (i.e., grazing) on primary-producer biomass. We conducted a field study testing whether fiddler crabs can facilitate S. alterniflora growth sufficiently to mitigate overgrazing by periwinkles and thus sustain S. alterniflora marsh. As inferred from contrasts to experimental plots lacking periwinkles and fiddler crabs, periwinkles alone exerted top-down control of total aboveground biomass and net growth of S. alterniflora. When fiddler crabs were included, they counteracted the effects of periwinkles on net S. alterniflora growth. Sediment oxygen levels were greater and S. alterniflora belowground biomass was lower where fiddler crabs were present, implying that fiddler crab burrowing enhanced S. alterniflora growth. Consequently, in the stressful interior S. alterniflora marsh, where subsurface soil anoxia is widespread, fiddler crab facilitation can mitigate top-down control by periwinkles and can limit and possibly prevent loss of biogenically structured marsh habitat and its ecosystem services.
Habitat fragmentation involves habitat loss concomitant with changes in spatial configuration, confounding mechanistic drivers of biodiversity change associated with habitat disturbance. Studies attempting to isolate the effects of altered habitat configuration on associated communities have reported variable results. This variability may be explained in part by the fragmentation threshold hypothesis, which predicts that the effects of habitat configuration may only manifest at low levels of remnant habitat area. To separate the effects of habitat area and configuration on biodiversity, we surveyed fish communities in seagrass landscapes spanning a range of total seagrass area (2-74% cover within 16 000-m landscapes) and spatial configurations (1-75 discrete patches). We also measured variation in fine-scale seagrass variables, which are known to affect faunal community composition and may covary with landscape-scale features. We found that species richness decreased and the community structure shifted with increasing patch number within the landscape, but only when seagrass area was low (<25% cover). This pattern was driven by an absence of epibenthic species in low-seagrass-area, highly patchy landscapes. Additional tests corroborated that low movement rates among patches may underlie loss of vulnerable taxa. Fine-scale seagrass biomass was generally unimportant in predicting fish community composition. As such, we present empirical support for the fragmentation threshold hypothesis and we suggest that poor matrix quality and low dispersal ability for sensitive taxa in our system may explain why our results support the hypothesis, while previous empirical work has largely failed to match predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.