Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modi ed, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Abstract. We report a robust technique for laser frequency stabilisation that enables the reproducible loading of in excess of 10 9 Yb atoms from a Zeeman slower directly into a magneto-optical trap (MOT) operating on the 1 S 0 → 3 P 1 transition, without the need for a first stage MOT on the 1 S 0 → 1 P 1 transition. We use a simple atomic beam apparatus to generate narrow fluorescence signals on both the 399 nm 1 S 0 → 1 P 1 transition used for the Zeeman slower and the 556 nm 1 S 0 → 3 P 1 transition. We present in detail the methods for obtaining spectra with a high signalto-noise ratio and demonstrate error signals suitable for robust frequency stabilisation. Finally we demonstrate the stability and precision of our technique through sensitive measurements of the gravitational sag of the Yb MOT as a function of the intensity of the laser cooling beams, which are in good agreement with theory. These results will be important for efficient loading of the atoms into an optical dipole trap.
We present a solid-state laser system that generates over 200 mW of continuous-wave, narrowband light, tunable from 316.3 nm - 317.7 nm and 318.0 nm - 319.3 nm. The laser is based on commercially available fiber amplifiers and optical frequency doubling technology, along with sum frequency generation in a periodically poled stoichiometric lithium tantalate crystal. The laser frequency is stabilized to an atomic-referenced high finesse optical transfer cavity. Using a GPS-referenced optical frequency comb we measure a long term frequency instability of < 35 kHz for timescales between 10(-3) s and 10(3) s. As an application we perform spectroscopy of Sr Rydberg states from n = 37 - 81, demonstrating mode-hop-free scans of 24 GHz. In a cold atomic sample we measure Doppler-limited linewidths of 350 kHz.
Single-cell magneto-optical Faraday filters find great utility and are realized with either “wing” or “line center” spectral profiles. We show that cascading a second cell with independent axial (Faraday) or transverse (Voigt) magnetic field leads to improved performance in terms of figure of merit (FOM) and spectral profile. The first cell optically rotates the plane of polarization of light creating the high transmission window; the second cell selectively absorbs the light eliminating unwanted transmission. Using naturally abundant Rb vapor cells, we realize a Faraday–Faraday wing filter and the first, to the best of our knowledge, recorded Faraday–Voigt line center filter which show excellent agreement with theory. The two filters have FOM values of 0.86 and 1.63 GHz−1, respectively.
We present a quantitative model for magneto-optical traps operating on narrow transitions, where the transition linewidth and the recoil shift are comparable. We combine a quantum treatment of the light scattering process with a Monte-Carlo simulation of the atomic motion. By comparing our model to an experiment operating on the 5s 2 1 S 0 → 5s5p 3 P 1 transition in strontium, we show that it quantitatively reproduces the cloud size, position, temperature and dynamics over a wide range of operating conditions, without any adjustable parameters. We also present an extension of the model that quantitatively reproduces the transfer of atoms into a far off-resonance dipole trap, highlighting its use as a tool for optimizing complex cold atom experiments. ARTICLE HISTORY
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.