Our results indicating decreased alcohol consumption, lower saccharin preference, and higher quinine preference in KOR KO mice are in line with previous observations of opioid involvement in maintenance of food intake and raise the possibility that the deficient dynorphin/KOR system affects orosensory reward through central mechanisms which reduce alcohol intake and disrupt tastant responses, either as direct effects of absence of kappa-opioid receptors, or as effects of indirect developmental compensatory changes.
It is believed that drug-induced behavioral sensitization is an important process in the development of substance dependence. In order to explore mechanisms of sensitization, a mouse model of nicotine-induced locomotor sensitization was established, and effects of the sensitization process on mesencepahlic gene expression were examined. A schedule, which included 3 weeks of intermittent nicotine exposure (0.5 mg/kg, s.c.) and 3 weeks of withdrawal, resulted in locomotor sensitization. Effects of sensitization on mesencephalic expression of approximately 14,000 genes were assessed using oligonucleotide microarrays. Signal intensity differences in samples obtained from repeated nicotine- and saline-exposed animals were analyzed with z-test after False Discovery Rate (FDR) multiple test correction. Genes related to GABA-A receptors and protein phosphatases were among 68 genes showing significantly different expression levels between the saline and the nicotine groups. We hypothesize that some of the gene expression changes in the mesencephalon are involved in pathways leading to nicotine-induced sensitization. Down-regulation of GABA-A receptors induced by repeated nicotine exposure may facilitate dopaminergic neuronal transmission and may contribute to increased locomotor activity.
Fasting reduces gastrointestinal cellular proliferation rates through G1 cycle blockade and can promote cellular protection of normal but not cancer cells through altered cell signaling including down-regulation of insulin-like growth factor 1 (IGF-1). Consequently, the purpose of this study was to determine the effects of fasting on delayed-type chemotherapy-induced nausea and vomiting in dogs receiving doxorubicin. This prospective randomized crossover study involved intended administration of two doses of doxorubicin. Cancer-bearing dogs were randomized to be fasted for 24 hours beginning at 6 P.M. the night before the first or second doxorubicin administration, and all treatments were administered within an hour before or after 12 P.M. Dogs were fed normally before the alternate dose. Circulating IGF-1 concentrations were determined from serum samples obtained immediately before each doxorubicin treatment. Data from 35 doses were available from 20 dogs enrolled. Dogs that were fasted exhibited a significantly lower incidence of vomiting, when compared to fed dogs (10% compared to 67%, P = .020). Furthermore, among the 15 dogs that completed crossover dosing, vomiting was abrogated in four of five dogs that experienced doxorubicin-induced vomiting when fed normally (P = .050). No differences in other gastrointestinal, constitutional, or bone marrow toxicities or serum IGF-1 levels were observed.
The aim of this study was to identify neurochemical pathways and candidate genes involved in adaptation to nicotine treatment and withdrawal. Locomotor sensitization was assessed in a nicotine challenge test after exposure to intermittent nicotine treatment and withdrawal. About 24 h after the challenge test the ventral tegmentum of the mesencephaion was dissected and processed using oligonucleotide microarrays with 22,690 probe sets (Affymetrix 430A 2.0). Quasi-congenic RQI, and donor BALB/cJ mice developed significant locomotor sensitization, while sensitization was not significant in the background partner, C57BL/6By. Comparing saline treated controls of C57BL/6ByJ and BALB/cJ by a rigorous statistical microarray analysis method we identified 238 differentially expressed transcripts. Quasi-congenic strains B6.Cb4i5-alpha4/Vad and B6.Ib5i7-beta25A/Vad significantly differed from the background strain in 11 and 11 transcripts, respectively. Identification of several cis- and trans-regulated genes indicates that further work with quasi-congenic strains can quickly lead to mapping of Quantitative Trait Loci for nicotine susceptibility because donor chromosome regions have been mapped in quasi-congenic strains. Nicotine treatment significantly altered the abundance of 41, 29, 54, and 14 ventral tegmental transcripts in strains C57BL/6ByJ, BALB/cJ, B6.Cb4i5-alpha4/Vad, and B6.Ib5i7-beta25A/Vad, respectively. Although transcript sets overlapped to some extent, each strain showed a distinct profile of nicotine sensitive genes, indicating genetic effects on nicotine-induced gene expression. Nicotine-responsive genes were related to processes including regulation of signal transduction, intracellular protein transport, proteasomal ubiquitin-dependent protein catabolism, and neuropeptide signaling pathway. Our results suggest that while there are common regulatory mechanisms across inbred strains, even relatively small differences in genetic constitution can significantly affect transcriptome response to nicotine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.