Abstract:The present work describes the study of micro (H-ZSM-5) and mesoporous structures, aiming at their application in the production of renewable fuels through the thermos-catalytic pyrolysis process both were synthesized hydrothermally and characterized by X-ray diffraction, thermal analysis, infrared spectroscopy, nitrogen adsorption, and surface acidity. The catalytic effect of the materials mentioned, as well as their mechanical mixtures in the proportions of H-ZSM-5 (75% wt) and AL-MCM-41 (25% wt); H-ZSM-5 (50% wt) and AL-MCM-41 (50% wt); H-ZSM-5 (25% wt) and AL-MCM-41 (75% wt) were used in the thermal and thermo-catalytic pyrolysis of sunflower oil. The products obtained in the presence of H-ZSM-5 (25% wt) and AL-MCM-41(75% wt) showed selectivity for the conversion of hydrocarbons between C11 and C16, which is near that of the petroleum-derived kerosene and diesel (>C16). On the other hand, the H-ZSM-5 (75% wt) and AL-MCM-41 (25% wt) material, in which the majoritarian catalyst is the microporous, with active sites and a higher surface acidity, indicates selectivity for light hydrocarbons (C5-C10), in the range of gasoline obtained by the conversion of mineral oil. The presence of catalysts (AL-MCM-41and H-ZSM-5) favors the deoxygenation of the pyrolysis products of sunflower oil by decarbonylation reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.