The Solar Activity Magnetic Monitor (SAMM) Network (SAMNet) is a future UK-led international network of ground-based solar telescope stations. SAMNet, at its full capacity, will continuously monitor the Sun’s intensity, magnetic and Doppler velocity fields at multiple heights in the solar atmosphere (from photosphere to upper chromosphere). Each SAMM sentinel will be equipped with a cluster of identical telescopes each with different magneto-optical filter (MOFs) to take observations in K~I, Na~D and Ca~I spectral bands. A subset of SAMM stations will have white-light coronagraphs and emission line coronal spectropolarimeters. The objectives of SAMNet are to provide observational data for the space weather research and forecast. The goal is to achieve an operationally sufficient lead time of e.g. flare warning of 2-8 hours, and provide much sought-after continuous synoptic maps (e.g., LoS magnetic and velocity fields, intensity) of the lower solar atmosphere with a spatial resolution limited only by seeing or diffraction limit, and with a cadence of 10 minutes. The individual SAMM sentinels will be connected into their master HQ hub where data received from all the slave stations will be automatically processed and flare warning issued up to 26 hrs in advance.
Atom-light interactions in micro-and nanoscale systems hold great promise for alternative technologies based on integrated emitters and optical modes. We present the design architecture, construction method, and characterization of an all-glass alkali-metal vapor cell with nanometer-scale internal structure. Our cell has a glue-free design that allows versatile optical access, in particular with high numerical aperture optics, and incorporates a compact integrated heating system in the form of an external deposited indium tin oxide layer. By performing spectroscopy in different illumination and detection schemes, we investigate atomic densities and velocity distributions in various nanoscopic landscapes. We apply a two-photon excitation scheme to atoms confined in one dimension within our cells, achieving resonance line widths more than an order of magnitude smaller than the Doppler width. We also demonstrate sub-Doppler line widths for atoms confined in two dimensions to micron-sized channels. Furthermore, we illustrate control over vapor density within our cells through nanoscale confinement alone, which could offer a scalable route towards room-temperature devices with single atoms within an interaction volume. Our design offers a robust platform for miniaturized devices that could easily be combined with integrated photonic circuits.
The spectroscopy of hot atomic vapours is a hot topic. Many of the work-horse techniques of contemporary atomic physics were first demonstrated in hot vapours. Alkali-metal atomic vapours are ideal media for quantum-optics experiments as they combine: a large resonant optical depth; long coherence times; and well-understood atom-atom interactions. These features aid with the simplicity of both the experimental set up and the theoretical framework. The topic attracts much attention as these systems are ideal for studying both fundamental physics and has numerous applications, especially in sensing electromagnetic fields and quantum technology. This tutorial reviews the necessary theory to understand the Doppler broadened absorption spectroscopy of alkali-metal atoms, and explains the data taking and processing necessary to compare theory and experiment. The aim is to provide a gentle introduction to novice scientists starting their studies of the spectroscopy of thermal vapours whilst also calling attention to the application of these ideas in the contemporary literature. In addition, the work of expert practitioners in the field is highlighted, explaining the relevance of three extensively-used software packages that complement the presentation herein.
We present a comparison between lens cavity filters and atomic line filters, discussing their relative merits for applications in quantum optics. We describe the design, characterization and stabilization procedure of a lens cavity filter, which consists of a high-reflection coated commercially available plano-convex lens, and compare it to an ultra-narrow atomic band-pass filter utilizing the D 2 absorption line in atomic rubidium vapor. We find that the cavity filter peak transmission frequency and bandwidth can be chosen arbitrarily but the transmission frequency is subject to thermal drift and the cavity needs stabilization to better than a few mK, while the atomic filter is intrinsically stable and tied to an atomic resonance frequency such that it can be used in a non-laboratory environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.