We show that homogeneous line broadening drastically affects the performance of atomic Faraday filters. We study the effects of cell length and find that the behaviour of ‘line-centre’ filters are quite different from ‘wing-type’ filters, where the effect of self-broadening is found to be particularly important. We use a computer optimization algorithm to find the best magnetic field and temperature for Faraday filters with a range of cell lengths, and experimentally realize one particular example using a micro-fabricated 87Rb vapour cell. We find excellent agreement between our theoretical model and experimental data.
We present an experimental study of seeded four-wave mixing (4WM) using a diamond excitation scheme (with states from the 5S 1/2 , 5P 1/2 , 5P 3/2 and 5D 3/2 terms) in a thermal vapour of 87 Rb atoms. We investigate the 4WM spectra under the application of a strong magnetic field (0.6 T). The Zeeman interaction is strong enough to realise the hyperfine Paschen-Back regime, which has the effect of separating the optical transitions by more than the Doppler width, thereby significantly simplifying the spectral features. We show that this facilitates a quantitative comparison, even in the regime of strong dressing, between experimental data and a simple theoretical model based only on four-level optical Bloch equations.
We demonstrate a technique to lock simultaneously two laser frequencies to each step of a two-photon transition in the presence of a magnetic field sufficiently large to gain access to the hyperfine Paschen-Back regime. A ladder configuration with the 5, 5, and 5 terms in a thermal vapor of 87 atoms is used. The two lasers remain locked for more than 24 h. For the sum of the laser frequencies, which represents the stability of the two-photon lock, we measure a frequency instability of less than the Rb natural linewidth of 6 MHz for nearly all measured timescales.
We present a comparison between lens cavity filters and atomic line filters, discussing their relative merits for applications in quantum optics. We describe the design, characterization and stabilization procedure of a lens cavity filter, which consists of a high-reflection coated commercially available plano-convex lens, and compare it to an ultra-narrow atomic band-pass filter utilizing the D 2 absorption line in atomic rubidium vapor. We find that the cavity filter peak transmission frequency and bandwidth can be chosen arbitrarily but the transmission frequency is subject to thermal drift and the cavity needs stabilization to better than a few mK, while the atomic filter is intrinsically stable and tied to an atomic resonance frequency such that it can be used in a non-laboratory environment.
We present a novel solution to automated beam alignment optimization. This device is based on a Raspberry Pi computer, stepper motors, commercial optomechanics and electronic devices, and the open-source machine learning algorithm M-LOOP. We provide schematic drawings for the custom hardware necessary to operate the device and discuss diagnostic techniques to determine the performance. The beam auto-aligning device has been used to improve the alignment of a laser beam into a single-mode optical fiber from manually optimized fiber alignment, with an iteration time of typically 20 minutes. We present example data of one such measurement to illustrate device performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.