This paper focuses on the computer side of human-computer interaction through natural language, which is the domain of natural language generation (NLG) studies. From a given (usually non-linguistic) input, NLG systems will in principle generate the same fixed text as an output and in order to attain more natural or human-like interaction will often resort to a wide range of strategies for stylistic variation. Among these, the use of computational models of human personality has emerged as a popular alternative in the field and will be the focus of the present work as well. More specifically, the present study describes two machine learning experiments to establish possible relations between personality and content selection (as opposed to the more well-documented relation between personality and surface realisation), and it is, to the best of our knowledge, the first of its kind to address this issue at both macro and micro planning levels, which may arguably pave the way for the future development of more robust personality-dependent systems of this kind.
O presente trabalho traz um estudo noâmbito de Geração de Língua Natural, com enfase na tarefa de Geração de Expressões de Referência (GER), a qual consiste em gerar expressões referenciais semelhantesàs produzidas por humanos. Existem estudos que exploram o uso da variação individual do ser humano no aprendizado do padrão de seleção de conteúdo na construção de descrições, contudo, treinar tais conjuntos de dadoś e computacionalmente caro. O trabalho apresenta um modelo de seleção de conteúdo para GER, baseado em traços de personalidade, o qual generaliza padrões de comportamentos referenciais similares em cada perfil de personalidade. Na pesquisa também realizou-se um levantamento bibliográfico sobre o tema, e construiu-se um córpus com expressões de referência contendo informações de personalidade de cada participante, as quais foram anotadas tomando por base o modelo dos Cinco Grandes Fatores. Este córpus tem como finalidade ser utilizado como entrada tanto no modelo desenvolvido, como em outros estudos naárea. Os resultados comprovam que modelos de GER dependentes da personalidade superam os algoritmos GER tradicionais, e que são uma alternativa viável em abordagens que dependam da variação de locutores.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.