The Fact Extraction and VERification (FEVER) shared task was launched to support the development of systems able to verify claims by extracting supporting or refuting facts from raw text. The shared task organizers provide a large-scale dataset for the consecutive steps involved in claim verification, in particular, document retrieval, fact extraction, and claim classification. In this paper, we present our claim verification pipeline approach, which, according to the preliminary results, scored third in the shared task, out of 23 competing systems. For the document retrieval, we implemented a new entity linking approach. In order to be able to rank candidate facts and classify a claim on the basis of several selected facts, we introduce two extensions to the Enhanced LSTM (ESIM).
We demonstrate that for sentence-level relation extraction it is beneficial to consider other relations in the sentential context while predicting the target relation. Our architecture uses an LSTM-based encoder to jointly learn representations for all relations in a single sentence. We combine the context representations with an attention mechanism to make the final prediction.We use the Wikidata knowledge base to construct a dataset of multiple relations per sentence and to evaluate our approach. Compared to a baseline system, our method results in an average error reduction of 24% on a held-out set of relations.The code and the dataset to replicate the experiments are made available at https://github.com/ukplab.
The first stage of every knowledge base question answering approach is to link entities in the input question. We investigate entity linking in the context of a question answering task and present a jointly optimized neural architecture for entity mention detection and entity disambiguation that models the surrounding context on different levels of granularity.We use the Wikidata knowledge base and available question answering datasets to create benchmarks for entity linking on question answering data. Our approach outperforms the previous state-of-the-art system on this data, resulting in an average 8% improvement of the final score. We further demonstrate that our model delivers a strong performance across different entity categories.
Recent progress through advanced neural models pushed the performance of task-oriented dialog systems to almost perfect accuracy on existing benchmark datasets for intent classification and slot labeling. However, in evolving real-world dialog systems, where new functionality is regularly added, a major additional challenge is the lack of annotated training data for such new functionality, as the necessary data collection efforts are laborious and time-consuming. A potential solution to reduce the effort is to augment initial seed data by paraphrasing existing utterances automatically. In this paper, we propose a new, data-efficient approach following this idea. Using an interpretation-to-text model for paraphrase generation, we are able to rely on existing dialog system training data, and, in combination with shuffling-based sampling techniques, we can obtain diverse and novel paraphrases from small amounts of seed data. In experiments on a public dataset and with a real-world dialog system, we observe improvements for both intent classification and slot labeling, demonstrating the usefulness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.