Conservation paleobiology has coalesced over the last two decades since its formal coining, united by the goal of applying geohistorical records to inform the conservation, management, and restoration of biodiversity and ecosystem services. Yet, the field is still attempting to form an identity distinct from its academic roots. Here, we ask a deceptively simple question: What is conservation paleobiology? To track its development as a field, we synthesize complementary perspectives from a survey of the scientific community that is familiar with conservation paleobiology and a systematic literature review of publications that use the term. We present an overview of conservation paleobiology’s research scope and compare survey participants’ perceptions of what it is and what it should be as a field. We find that conservation paleobiologists use a variety of geohistorical data in their work, although research is typified by near-time records of marine molluscs and terrestrial mammals collected over local to regional spatial scales. Our results also confirm the field’s broad disciplinary basis: survey participants indicated that conservation paleobiology can incorporate information from a wide range of disciplines spanning conservation biology, ecology, historical ecology, paleontology, and archaeology. Finally, we show that conservation paleobiologists have yet to reach a consensus on how applied the field should be in practice. The survey revealed that many participants thought the field should be more applied but that most do not currently engage with conservation practice. Reflecting on how conservation paleobiology has developed over the last two decades, we discuss opportunities to promote community cohesion, strengthen collaborations within conservation science, and align training priorities with the field’s identity as it continues to crystallize.
Trait-based approaches are increasingly relevant to understand ecological and evolutionary patterns. A comprehensive trait database for extant reef corals is already available and widely used to reveal vulnerabilities to environmental disturbances including climate change. However, the lack of similar trait compilations for extinct reef builders prevents the derivation of generalities from the fossil record and to address similar questions. Here we present the Ancient Reef Traits Database (ARTD), which aims to compile trait information of various reef-building organisms in one single repository. ARTD contains specimen-level data from both published and unpublished resources. In this first version, we release 15 traits for 505 genera and 1129 species, comprising a dataset of 17,841 trait values of Triassic to mid-Holocene scleractinian corals, the dominant reef-builders in the modern ocean. Other trait data, including for other reef-building organisms, are currently being collated.
We consider dynamics of a free relativists particle at very short distances treating space-time as Archimedean as well as no Archimedean one. Usual action for the relativistic particle is nonlinear. Meanwhile, in the real case, that system may be treated like a system with quadratic (Hamiltonian) constraint. We perform similar procedure in p-adic case, as the simplest example of a no Archimedean space. The existence of the simplest vacuum state is considered and corresponding Green function is calculated. Similarities and differences between obtained results on both spaces are examined and possible physical implications are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.