Discovered in late 1817, cadmium is currently one of the most important occupational and environmental pollutants. It is associated with renal, neurological, skeletal and other toxic effects, including reproductive toxicity, genotoxicity, and carcinogenicity. There is still much to fi nd out about its mechanisms of action, biomarkers of critical effects, and ways to reduce health risks. At present, there is no clinically effi cient agent to treat cadmium poisoning due to predominantly intracellular location of cadmium ions. This article gives a brief review of cadmium-induced oxidative stress and its interactions with essential elements zinc and magnesium as relevant mechanisms of cadmium toxicity. It draws on available literature data and our own results, which indicate that dietary supplementation of either essential element has benefi cial effect under condition of cadmium exposure. We have also tackled the reasons why magnesium addition prevails over zinc and discussed the protective role of magnesium during cadmium exposure. These fi ndings could help to solve the problem of prophylaxis and therapy of increased cadmium body burden.
Per- and polyfluoroalkyl substances (PFAS) are a group of over 4700 heterogeneous compounds with amphipathic properties and exceptional stability to chemical and thermal degradation. The unique properties of PFAS compounds has been exploited for almost 60 years and has largely contributed to their wide applicability over a vast range of industrial, professional and non-professional uses. However, increasing evidence indicate that these compounds represent also a serious concern for both wildlife and human health as a result of their ubiquitous distribution, their extreme persistence and their bioaccumulative potential. In light of the adverse effects that have been already documented in biota and human populations or that might occur in absence of prompt interventions, the competent authorities in matter of health and environment protection, the industries as well as scientists are cooperating to identify the most appropriate regulatory measures, substitution plans and remediation technologies to mitigate PFAS impacts. In this review, starting from PFAS chemistry, uses and environmental fate, we summarize the current knowledge on PFAS occurrence in different environmental media and their effects on living organisms, with a particular emphasis on humans. Also, we describe present and provisional legislative measures in the European Union framework strategy to regulate PFAS manufacture, import and use as well as some of the most promising treatment technologies designed to remediate PFAS contamination in different environmental compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.