A Leishmaniose Tegumentar Americana (LTA) é uma doença infecto-parasitária transmitida pelo mosquito palha ou birigui, que atinge vários municípios de São Paulo. O objetivo desta pesquisa é avaliar, por meio de dados de sensoriamento remoto e epidemiológicos, se a densidade florestal e sua proximidade em relação às áreas urbanas em municípios do Vale do Ribeira paulista, contribuem para a incidência de LTA na população. São apresentados resultados preliminares obtidos até o momento, e que tratam da análise da distribuição espacial da incidência de LTA na mesorregião do Vale do Ribeira paulista, utilizando-se casos notificados entre 2007 e 2014.
A Leishmaniose Tegumentar Americana (LTA) é uma doença infecto-parasitária causada pela infecção por protozoários do gênero Leishmania. A maioria dos casos ocorrem em áreas próximas à fragmentos de matas e em bairros rurais. Os objetivos deste artigo são: mapear as áreas de alto risco de LTA e analisar a associação espacial entre taxa de incidência de LTA e determinantes geográficos da doença no estado de São Paulo, como percentual de população rural, percentual de cobertura vegetal nativa e renda per capita do município. Para isso, utilizamos a técnica de suavização bayesiana empírica de taxas brutas e aplicação da técnica de autocorrelação espacial bivariada local. Os resultados mostraram que o principal aglomerado de alto risco de LTA localiza-se no vale do Ribeira. As taxas mais altas de incidência estão associadas espacialmente a municípios com alto percentual de população rural, alto percentual de cobertura vegetal primitiva e baixa renda per capita.
<p>Desertification is a process characterized by the degradation and drying of soils in arid, semiarid and subhumid regions that results from a combination of climatic factors and human activities. This process influences the productivity potential of the soils, impacting the populations residing in the affected areas, and may cause long-term economic problems and impacts on human health, such as hunger and food insecurity. The aim of this paper is to present a geospatial model for mapping desertification risk areas in northeastern Brazil. The test area for the model was located in the Brazilian semiarid climatic region in the state of Cear&#225;. In this area, the dry season lasts for 7 to 8 months, and the original vegetation belongs to the Caatinga biome. The model was based on algebraic operations between maps of environmental variables, performed in a geographic information system, and based on equations obtained through logistic regression analysis. First, 300 points were mapped in the centroids of desertification polygons (D), and 300 points were mapped in areas where no desertification processes (ND) had occurred. All points were selected by visual interpretation of Sentinel-2A multispectral images. Then, 500 m radius buffers were mapped around the centroids of the D and ND areas, and the mean values of the following environmental variables were extracted within these buffers: the average annual rainfall (RAIN), altitude (ELV), vegetation index dry season (VID), wet season vegetation index (VIM), dry season soil temperature (LTD), and wet season soil temperature (LTM). The mean values &#8203;&#8203;of the RAIN, ELV, VID, VIM, LTM and LTD variables for the D and ND areas were entered in the MedCalc software for logistic regression analysis. The <em>p</em> probability map of desertification occurrence was constructed in ArcGIS Pro using equations for which the parameters were obtained with the logistic regression analysis. The results showed that the variables RAIN, ELV, VID and LTD (p <0.0001) contributed significantly to the occurrence of desertification areas. The value obtained for the area under the ROC curve (AUC) parameter was 0.757, and the percentage of cases correctly classified by the model was 70.17%. In the next step of this research, this model will be tested on a larger area of 72,000 km<sup>2</sup> that is located in the Jaguaribe River basin, northeastern Brazil.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.