Os mapas de uso e cobertura da terra são instrumentos basilares para a compreensão detalhada dos padrões da organização do espaço, instrumento essencial para o gerenciamento agroambiental. Este artigo objetivou comparar e avaliar a precisão da classificação digital de uso e cobertura das terras no cerrado maranhense, a partir de imagens OLI (Operational Terra Imager) do Landsat-8 e MSI (Multispectral Instrument) do Sentinel-2. As imagens analisadas são de 2021, as quais foram pré-processadas, segmentadas e classificadas utilizado o algoritmo Random Forest. As análises mostraram que ambas as classificações foram qualificadas como “muito bom”, obtendo-se Índice Kappa (0,706) e Exatidão Global (76%) para as imagens OLI e Índice Kappa (0,775) e Exatidão Global (84%) para as imagens MSI. Os resultados obtidos podem subsidiar o planejamento e execução de novos mapeamentos e monitoramentos agrícolas no Cerrado, contribuindo com as tomadas de decisão de grupos de pesquisa.
Diante do atual contexto mundial marcado profundamente pelo avanço da urbanização em concomitância com o crescimento populacional e consequentemente, pela utilização desenfreada dos recursos naturais, gerando sérios desequilíbrios para o meio ambiente, cria-se uma necessidade de preservação de todo e qualquer componente natural, principalmente no meio urbano, tendo em vista que este é mais suscetível ao processo de desgaste ambiental. Dessa forma, a presente pesquisa justifica-se na relevância de estudos voltados para a preservação dos ecossistemas naturais existentes, especificamente aos campos de dunas de Fortaleza e demonstrar a importância da preservação desta paisagem. O objetivo principal deste trabalho é analisar o uso e ocupação da terra no município de Fortaleza, mais precisamente na feição morfológica dos campos dunares na planície litorânea no bairro Sabiaguaba e, como objetivos específicos: identificar os aspectos geoambientais da área de estudo e apontar os impactos ambientais negativos causados pelos processos de uso e ocupação. Tendo como base o método geossistêmico, foi possível realizar uma análise a fim de esclarecer a interrelação e interdependência entre os componentes geoambientais, permitindo uma visão integrada. Além disso, foram utilizadas as técnicas de geoprocessamento, registro fotográfico e trabalhos de campo. Como resultado observou-se que o Parque Natural Municipal das Dunas da Sabiaguaba é fundamental para a proteção das dunas da Sabiaguaba, porém as ocupações irregulares e o uso inadequado dos Recursos naturais ainda existem e causam danos ao meio ambiente.Palavras-chave: Unidades de Conservação; Preservação; Geossistemas ABSTRACTGiven the current global context marked by the advance of urbanization in concomitance with population growth and, consequently, by the unrestrained use of natural resources, generating serious imbalances for the environment, there is a need to preserve all and any natural component, mainly in the urban environment, considering that this is more susceptible to the process of environmental degradation. Thus, the present research is justified on the relevance of studies aimed at the preservation of the existing natural ecosystems, specifically the dunes of Fortaleza, and demonstrate the importance of preserving this landscape. The main objective of this work is to analyze the use and occupation of the land in the city of Fortaleza, more precisely in the morphological feature of the dune fields in the coastal plain in the Sabiaguaba neighborhood and, as specific objectives: to identify the geoenvironmental aspects of the study area and to point out the impacts environmental impacts caused by the processes of use and occupation. Based on the geosystemic method, it was possible to perform an analysis to clarify the interrelationship and interdependence between the geoenvironmental components, allowing an integrated view. In addition, geoprocessing techniques, photographic records and fieldwork were used. As a result, it was observed that the Sabiaguaba Dunes Municipal Natural Park is fundamental for the protection of Sabiaguaba dunes, but irregular occupations and inappropriate use of natural resources still exist and cause damage to the environment.Keywords: Conservation units; Preservation; Geosystems. RESUMENDado el contexto mundial actual marcado por el avance de la urbanización concomitantemente con el crecimiento de la población y, en consecuencia, el uso desenfrenado de los recursos naturales, generando graves desequilibrios para el medio ambiente, se crea la necesidad de preservar todos y cada uno de los componentes naturales, especialmente en el entorno urbano, dado que es más susceptible al proceso de desgaste ambiental. Por lo tanto, esta investigación se justifica en la relevancia de los estudios centrados en la preservación de los ecosistemas naturales existentes, específicamente los campos de dunas de Fortaleza y demuestran la importancia de preservar este paisaje. El objetivo principal de este trabajo es analizar el uso de la tierra y la ocupación en la ciudad de Fortaleza, más precisamente en las características morfológicas de los campos de dunas en la llanura costera en el barrio de Sabiaguaba y, como objetivos específicos: identificar los aspectos geoambientales del área de estudio y señalar los impactos. Impactos ambientales negativos causados por los procesos de uso y ocupación. Basado en el método geosistémico, fue posible realizar un análisis para aclarar la interrelación e interdependencia entre los componentes geoambientales, permitiendo una visión integrada. Además, se utilizaron las técnicas de geoprocesamiento, grabación fotográfica y trabajo de campo. Como resultado, se observó que el Parque Natural Municipal de Dunas de Sabiaguaba es fundamental para la protección de las dunas de Sabiaguaba, pero la ocupación irregular y el uso inadecuado de los recursos naturales todavía existen y causan daños al medio ambiente. Palabras clave: Unidades de Conservación; Preservación; Geosistemas
<p>Desertification is a process characterized by the degradation and drying of soils in arid, semiarid and subhumid regions that results from a combination of climatic factors and human activities. This process influences the productivity potential of the soils, impacting the populations residing in the affected areas, and may cause long-term economic problems and impacts on human health, such as hunger and food insecurity. The aim of this paper is to present a geospatial model for mapping desertification risk areas in northeastern Brazil. The test area for the model was located in the Brazilian semiarid climatic region in the state of Cear&#225;. In this area, the dry season lasts for 7 to 8 months, and the original vegetation belongs to the Caatinga biome. The model was based on algebraic operations between maps of environmental variables, performed in a geographic information system, and based on equations obtained through logistic regression analysis. First, 300 points were mapped in the centroids of desertification polygons (D), and 300 points were mapped in areas where no desertification processes (ND) had occurred. All points were selected by visual interpretation of Sentinel-2A multispectral images. Then, 500 m radius buffers were mapped around the centroids of the D and ND areas, and the mean values of the following environmental variables were extracted within these buffers: the average annual rainfall (RAIN), altitude (ELV), vegetation index dry season (VID), wet season vegetation index (VIM), dry season soil temperature (LTD), and wet season soil temperature (LTM). The mean values &#8203;&#8203;of the RAIN, ELV, VID, VIM, LTM and LTD variables for the D and ND areas were entered in the MedCalc software for logistic regression analysis. The <em>p</em> probability map of desertification occurrence was constructed in ArcGIS Pro using equations for which the parameters were obtained with the logistic regression analysis. The results showed that the variables RAIN, ELV, VID and LTD (p <0.0001) contributed significantly to the occurrence of desertification areas. The value obtained for the area under the ROC curve (AUC) parameter was 0.757, and the percentage of cases correctly classified by the model was 70.17%. In the next step of this research, this model will be tested on a larger area of 72,000 km<sup>2</sup> that is located in the Jaguaribe River basin, northeastern Brazil.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.