The potential of brain electrical activity generated as a response to a visual stimulus is examined in the context of the identification of individuals. Specifically, a framework for the Visual Evoked Potential (VEP)-based biometrics is established, whereby energy features of the gamma band within VEP signals were of particular interest. A rigorous analysis is conducted which unifies and extends results from our previous studies, in particular, with respect to 1) increased bandwidth, 2) spatial averaging, 3) more robust power spectrum features, and 4) improved classification accuracy. Simulation results on a large group of subject support the analysis.
The use of EEG as a biometrics modality has been investigated for about a decade, however its feasibility in real-world applications is not yet conclusively established, mainly due to the issues with collectability and reproducibility. To this end, we propose a readily deployable EEG biometrics system based on a 'one-fits-all' viscoelastic generic in-ear EEG sensor (collectability), which does not require skilled assistance or cumbersome preparation. Unlike most existing studies, we consider data recorded over multiple recording days and for multiple subjects (reproducibility) while, for rigour, the training and test segments are not taken from the same recording days. A robust approach is considered based on the resting state with eyes closed paradigm, the use of both parametric (autoregressive model) and non-parametric (spectral) features, and supported by simple and fast cosine distance, linear discriminant analysis and support vector machine classifiers. Both the verification and identification forensics scenarios are considered and the achieved results are on par with the studies based on impractical on-scalp recordings. Comprehensive analysis over a number of subjects, setups, and analysis features demonstrates the feasibility of the proposed ear-EEG biometrics, and its potential in resolving the critical collectability, robustness, and reproducibility issues associated with current EEG biometrics.• Recording scalp-EEG with multiple electrodes is timeconsuming to set-up and cumbersome to wear. Such a
The non-invasive estimation of blood oxygen saturation (SpO2) by pulse oximetry is of vital importance clinically, from the detection of sleep apnea to the recent ambulatory monitoring of hypoxemia in the delayed post-infective phase of COVID-19. In this proof of concept study, we set out to establish the feasibility of SpO2 measurement from the ear canal as a convenient site for long term monitoring, and perform a comprehensive comparison with the right index finger—the conventional clinical measurement site. During resting blood oxygen saturation estimation, we found a root mean square difference of 1.47% between the two measurement sites, with a mean difference of 0.23% higher SpO2 in the right ear canal. Using breath holds, we observe the known phenomena of time delay between central circulation and peripheral circulation with a mean delay between the ear and finger of 12.4 s across all subjects. Furthermore, we document the lower photoplethysmogram amplitude from the ear canal and suggest ways to mitigate this issue. In conjunction with the well-known robustness to temperature induced vasoconstriction, this makes conclusive evidence for in-ear SpO2 monitoring being both convenient and superior to conventional finger measurement for continuous non-intrusive monitoring in both clinical and everyday-life settings.
Abstract:The recently introduced multivariate multiscale entropy (MMSE) has been successfully used to quantify structural complexity in terms of nonlinear within-and cross-channel correlations as well as to reveal complex dynamical couplings and various degrees of synchronization over multiple scales in real-world multichannel data. However, the applicability of MMSE is limited by the coarse-graining process which defines scales, as it successively reduces the data length for each scale and thus yields inaccurate and undefined entropy estimates at higher scales and for short length data. To that cause, we propose the multivariate multiscale fuzzy entropy (MMFE) algorithm and demonstrate its superiority over the MMSE on both synthetic as well as real-world uterine electromyography (EMG) short duration signals. Based on MMFE features, an improvement in the classification accuracy of term-preterm deliveries was achieved, with a maximum area under the curve (AUC) value of 0.99.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.