We argue for network slicing as an efficient solution that addresses the diverse requirements of 5G mobile networks, thus providing the necessary flexibility and scalability associated with future network implementations. We elaborate on the challenges that emerge when we design 5G networks based on network slicing. We focus on the architectural aspects associated with the coexistence of dedicated as well as shared slices in the network. In particular, we analyze the realization options of a flexible radio access network with focus on network slicing and their impact on the design of 5G mobile networks. In addition to the technical study, this paper provides an investigation of the revenue potential of network slicing, where the applications that originate from such concept and the profit capabilities from the network operator's perspective are put forward.
Future mobile networks need to fulfill stringent requirements on data rates, reliability, and availability. In order to satisfy these requirements, heterogeneous radio access technologies and deployments need to be used. To make efficient use of these technologies, multi-connectivity has been proposed to connect to multiple different technologies simultaneously. In this paper, we discuss different options to connect to multiple radio access points. Each of these options is further detailed, novel functionality required for multi-connectivity is introduced, and expected benefits are explained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.