Chemical carcinogenesis induced by lifestyle factors like cigarette smoking is a major research area in molecular epidemiology. Gene expression analysis of large numbers of genes simultaneously using microarrays holds the opportunity to study the effects of such an exposure at the genome level yielding more mechanism-based information. Therefore, the aim of our study was to investigate multiple gene expressions in blood, indicative for the effects caused by cigarette smoke. Smoking-discordant monozygotic twin pairs (n=9) were studied to diminish influences of genetic background. Using a dedicated microarray containing 600 toxicologically relevant genes, we investigated which genes are differentially expressed in smokers compared to non-smokers. We also looked for genes of which the expression changes correlated with DNA adducts, a biomarker of effective dose for exposure to cigarette smoke carcinogens. The mean DNA adduct level in smokers differed significantly from that in non-smokers (mean +/- standard error 1.96 +/- 0.24 versus 1.17 +/- 0.16 adducts per 10(8) nucleotides, respectively; P=0.04). The genes of which the expression differed most significantly between smokers and non-smokers are ATF4, MAPK14, SOD2, CYP1B1 and SERPINB2. CYP1B1 and SOD2 can directly be linked to cigarette smoke exposure, whereas the other genes are associated with stress or environmentally induced response. Main functions of the genes influenced by cigarette smoking comprise carcinogen metabolism, oxidative stress response and anti-apoptosis.
In current molecular epidemiology studies, a wide range of methods are used to monitor early biological effects after exposure to xenobiotic agents. Gene expression profiling is considered a promising tool that may provide more sensitive, mechanism-based biomarkers. As a first step toward obtaining information on the applicability of gene expression profiles as a biomarker for early biological effects of carcinogen exposure, we conducted in vitro studies on human peripheral blood mononuclear cells (PBMC). We used cigarette smoke condensate (CSC) and a selection of its genotoxic constituents as model agents, applying cDNA microarray technology to investigate modulated gene expression. In independent experiments using cells from several donors, quiescent PBMC were exposed for 18 h, followed by gene expression analyses on a microarray containing 600 toxicologically relevant genes. The search for candidate biomarker genes was binomial: first we looked for genes responding similarly to all agents; second, for agent-specific genes. Many genes were significantly deregulated by all compounds, but as the direction of deregulation frequently differed per agent, they are not useful as generic biomarkers. Cigarette smoke condensate modulated the expression of many more genes than any of its constituents, with the largest effect in SERPINB2. The affected genes are involved in immune or stress responses, but surprisingly no genes involved in DNA damage response were modulated, and only a few in DNA repair. In conclusion, several genes have been identified as potential biomarkers for population studies on early biological effects caused by cigarette smoke exposure, but no genes were identified that represent a generic biomarker.
A crucial period for the development of the immune system occurs in utero. This results in a high fetal vulnerability to immunotoxic exposure, and indeed, immunotoxic effects have been reported, demonstrating negative effects on immune-related health outcomes and immune functionality. Within the NewGeneris cohort BraMat, a subcohort of the Norwegian Mother and Child Cohort Study (MoBa), immunotoxicity was demonstrated for polychlorinated biphenyls and dioxins, showing associations between estimated maternal intake levels and reduced measles vaccination responses in the offspring at the age of 3. The present study aimed to investigate this link at the transcriptomic level within the same BraMat cohort. To this end, whole-genome gene expression in cord blood was investigated and found to be associated with maternal Food Frequency Questionnaires-derived exposure estimates and with vaccination responses in children at 3 years of age. Because the literature reports gender specificity in the innate, humoral, and cell-mediated responses to viral vaccines, separate analysis for males and females was conducted. Separate gene sets for male and female neonates were identified, comprising genes significantly correlating with both 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and polychlorinated biphenyls (PCB) exposure and with measles vaccination response. Noteworthy, genes correlating negatively with exposure in general show positive correlations with antibody levels and vice versa. For both sexes, these included immune-related genes, suggesting immunosuppressive effects of maternal exposure to TCDD and PCB at the transcriptomic level in neonates in relation to measles vaccination response 3 years later.
Flanders, Belgium, is one of the most densely populated areas in Europe. The Flemish Environment and Health Survey (2002-2006) aimed at determining exposure to pollutants of neonates, adolescents, and older adults and to assess associated biological and health effects. This study investigated genome wide gene expression changes associated with a range of environmental pollutants, including cadmium, lead, PCBs, dioxin, hexachlorobenzene, p,p'-DDE, benzene, and PAHs. Gene expression levels were measured in peripheral blood cells of 20 adults with relatively high and 20 adults with relatively low combined internal exposure levels, all non-smokers aged 50-65. Pearson correlation was used to analyze associations between pollutants and gene expression levels, separately for both genders. Pollutant- and gender-specific correlation analysis results were obtained. For organochlorine pollutants, analysis within genders revealed that genes were predominantly regulated in opposite directions in males and females. Significantly modulated pathways were found to be associated with each of the exposure biomarkers measured. Pathways and/or genes related to estrogen and STAT5 signaling were correlated to organochlorine exposures in both genders. Our work demonstrates that gene expression in peripheral blood is influenced by environmental pollutants. In particular, gender-specific changes are associated with organochlorine pollutants, including gender-specific modulation of endocrine related pathways and genes. These pathways and genes have previously been linked to endocrine disruption related disorders, which in turn have been associated with organochlorine exposure. Based on our results, we recommend that males and females be considered separately when analyzing gene expression changes associated with exposures that may include chemicals with endocrine disrupting properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.