Direct comparison of the hepatoma cell lines HepG2 and HepaRG has previously been performed by only evaluating a limited set of genes or proteins. In this study, we examined the whole-genome gene expression of both cell lines before and after exposure to the genotoxic (GTX) carcinogens aflatoxin B1 and benzo[a]pyrene and the nongenotoxic (NGTX) carcinogens cyclosporin A, 17beta-estradiol, and 2,3,7,8-tetrachlorodibenzo-para-dioxin for 12 and 48 h. Before exposure, this analysis revealed an extensive network of genes and pathways, which were regulated differentially for each cell line. The comparison of the basal gene expression between HepG2, HepaRG, primary human hepatocytes (PHH), and liver clearly showed that HepaRG resembles PHH and liver the most. After exposure to the GTX and NGTX carcinogens, for both cell lines, common pathways were found that are important in carcinogenesis, for example, cell cycle regulation and apoptosis. However, also clear differences between exposed HepG2 and HepaRG were observed, and these are related to common metabolic processes, immune response, and transcription processes. Furthermore, HepG2 performs better in discriminating between GTX and NGTX carcinogens. In conclusion, these results have shown that HepaRG is a more suited in vitro liver model for biological interpretations of the effects of exposure to chemicals, whereas HepG2 is a more promising in vitro liver model for classification studies using the toxicogenomics approach. Although, it should be noted that only five carcinogens were used in this study.
Chemical carcinogens may cause a multitude of effects inside cells, thereby affecting transcript levels of genes by direct activation of transcription factors (TF) or indirectly through the formation of DNA damage. As the temporal profiles of these responses may be profoundly different, examining time-dependent changes may provide new insights in TF networks related to cellular responses to chemical carcinogens. Therefore, we investigated in human hepatoma cells gene expression changes caused by benzo[a]pyrene at 12 time points after exposure, in relation to DNA adduct and cell cycle. Temporal profiles for functional gene sets demonstrate both early and late effects in up- and downregulation of relevant gene sets involved in cell cycle, apoptosis, DNA repair, and metabolism of amino acids and lipids. Many significant transcription regulation networks appeared to be around TF that are proto-oncogenes or tumor suppressor genes. The time series analysis tool Short Time-series Expression Miner (STEM) was used to identify time-dependent correlation of pathways, gene sets, TF networks, and biological parameters. Most correlations are with DNA adduct levels, which is an early response, and less with the later responses on G1 and S phase cells. The majority of the modulated genes in the Reactome pathways can be regulated by several of these TF, e.g., 73% by nuclear factor-kappa B and 34-42% by c-MYC, SRF, AP1, and E2F1. All these TF can also regulate one or more of the others. Our data indicate that a complex network of a few TF is responsible for the majority of the transcriptional changes induced by BaP. This network hardly changes over time, despite that the transcriptional profiles clearly alter, suggesting that also other regulatory mechanisms are involved.
Polycyclic aromatic hydrocarbons (PAHs) cover a wide range of structurally related compounds which differ greatly in their carcinogenic potency. PAH exposure usually occurs through mixtures rather than individual compounds. Therefore, we assessed whether the effects of binary PAH mixtures on gene expression, DNA adduct formation, apoptosis and cell cycle are additive compared with the effects of the individual compounds in human hepatoma cells (HepG2). Equimolar and equitoxic mixtures of benzo[a]pyrene (B[a]P) with either dibenzo[a,l]pyrene (DB[a,l]P), dibenzo[a,h]anthracene (DB[a,h]A), benzo[b]fluoranthene (B[b]F), fluoranthene (FA) or 1-methylphenanthrene (1-MPA) were studied. DB[a,l]P, B[a]P, DB[a,h]A and B[b]F dose-dependently increased apoptosis and blocked cells cycle in S-phase. PAH mixtures showed an additive effect on apoptosis and on cell cycle blockage. DNA adduct formation in mixtures was higher than expected based on the individual compounds, indicating a synergistic effect of PAH mixtures. Equimolar mixtures of B[a]P and DB[a,l]P (0.1, 0.3 and 1.0 microM) were assessed for their effects on gene expression. Only at 1.0 microM, the mixture showed antagonism. All five compounds were also tested as a binary mixture with B[a]P in equitoxic concentrations. The combinations of B[a]P with B[b]F, DB[a,h]A or FA showed additivity, whereas B[a]P with DB[a,l]P or 1-MPA showed antagonism. Many individual genes showed additivity in mixtures, but some genes showed mostly antagonism or synergism. Our results show that the effects of binary mixtures of PAHs on gene expression are generally additive or slightly antagonistic, suggesting no effect or decreased carcinogenic potency, whereas the effects on DNA adduct formation show synergism, which rather indicates increased carcinogenic potency.
Chemical carcinogenesis induced by lifestyle factors like cigarette smoking is a major research area in molecular epidemiology. Gene expression analysis of large numbers of genes simultaneously using microarrays holds the opportunity to study the effects of such an exposure at the genome level yielding more mechanism-based information. Therefore, the aim of our study was to investigate multiple gene expressions in blood, indicative for the effects caused by cigarette smoke. Smoking-discordant monozygotic twin pairs (n=9) were studied to diminish influences of genetic background. Using a dedicated microarray containing 600 toxicologically relevant genes, we investigated which genes are differentially expressed in smokers compared to non-smokers. We also looked for genes of which the expression changes correlated with DNA adducts, a biomarker of effective dose for exposure to cigarette smoke carcinogens. The mean DNA adduct level in smokers differed significantly from that in non-smokers (mean +/- standard error 1.96 +/- 0.24 versus 1.17 +/- 0.16 adducts per 10(8) nucleotides, respectively; P=0.04). The genes of which the expression differed most significantly between smokers and non-smokers are ATF4, MAPK14, SOD2, CYP1B1 and SERPINB2. CYP1B1 and SOD2 can directly be linked to cigarette smoke exposure, whereas the other genes are associated with stress or environmentally induced response. Main functions of the genes influenced by cigarette smoking comprise carcinogen metabolism, oxidative stress response and anti-apoptosis.
Red meat consumption is associated with an increased colorectal cancer (CRC) risk, which may be due to an increased endogenous formation of genotoxic N-nitroso compounds (NOCs). To assess the impact of red meat consumption on potential risk factors of CRC, we investigated the effect of a 7-day dietary red meat intervention in human subjects on endogenous NOC formation and fecal water genotoxicity in relation to genome-wide transcriptomic changes induced in colonic tissue. The intervention showed no effect on fecal NOC excretion but fecal water genotoxicity significantly increased in response to red meat intake. Colonic inflammation caused by inflammatory bowel disease, which has been suggested to stimulate endogenous nitrosation, did not influence fecal NOC excretion or fecal water genotoxicity. Transcriptomic analyses revealed that genes significantly correlating with the increase in fecal water genotoxicity were involved in biological pathways indicative of genotoxic effects, including modifications in DNA damage repair, cell cycle, and apoptosis pathways. Moreover, WNT signaling and nucleosome remodeling pathways were modulated which are implicated in human CRC development. We conclude that the gene expression changes identified in this study corroborate the genotoxic potential of diets high in red meat and point towards a potentially increased CRC risk in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.