In recent years, separating effective target signals from mixed signals has become a hot and challenging topic in signal research. The SI-BSS (Blind source separation (BSS) based on swarm intelligence (SI) algorithm) has become an effective method for the linear mixture BSS. However, the SI-BSS has the problem of incomplete separation, as not all the signal sources can be separated. An improved algorithm for BSS with SI based on signal cross-correlation (SI-XBSS) is proposed in this paper. Our method created a candidate separation pool that contains more separated signals than the traditional SI-BSS does; it identified the final separated signals by the value of the minimum cross-correlation in the pool. Compared with the traditional SI-BSS, the SI-XBSS was applied in six SI algorithms (Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Differential Evolution (DE), Sine Cosine Algorithm (SCA), Butterfly Optimization Algorithm (BOA), and Crow Search Algorithm (CSA)). The results showed that the SI-XBSS could effectively achieve a higher separation success rate, which was over 35% higher than traditional SI-BSS on average. Moreover, SI-SDR increased by 14.72 on average.
The detection of water changes in plant stems by non-destructive online methods has become a hot spot in studying the physiological activity of plant water. In this paper, the ultrasonic radio-frequency echo (RFID) technique was used to detect water changes in stems. An algorithm (improved hybrid differential Akaike’s Information Criterion (AIC)) was proposed to automatically compute the position of the primary ultrasonic echo of stems, which is the key parameter of water changes in stems. This method overcame the inaccurate location of the primary echo, which was caused by the anisotropic ultrasound propagation and heterogeneous stems. First of all, the improved algorithm was analyzed and its accuracy was verified by a set of simulated signals. Then, a set of cutting samples from stems were taken for ultrasonic detection in the process of water absorption. The correlation between the moisture content of stems and ultrasonic velocities was computed with the algorithm. It was found that the average correlation coefficient of the two parameters reached about 0.98. Finally, living sunflowers with different soil moistures were subjected to ultrasonic detection from 9:00 to 18:00 in situ. The results showed that the soil moisture and the primary ultrasonic echo position had a positive correlation, especially from 12:00 to 18:00; the average coefficient was 0.92. Meanwhile, our results showed that the ultrasonic detection of sunflower stems with different soil moistures was significantly distinct. Therefore, the improved AIC algorithm provided a method to effectively compute the primary echo position of limbs to help detect water changes in stems in situ.
Plant growth is closely related to the structure of its stem. The ultrasonic echo signal of the plant stem carries much information on the stem structure, providing an effective means for analyzing stem structure characteristics. In this paper, we proposed to extract energy features of ultrasonic echo signals to study the structure of the plant stem. Firstly, it is found that there are obvious different ultrasonic energy changes in different kinds of plant stems whether in the time domain or the frequency domain. Then, we proposed a feature extraction method, density energy feature, to better depict the interspecific differences of the plant stems. In order to evaluate the extracted 24-dimensional features of the ultrasound, the information gain method and correlation evaluation method were adopted to compute their contributions. The results showed that the mean density, an improved feature, was the most significant contributing feature in the four living plant stems. Finally, the top three features in the feature contribution were selected, and each two of them composed as 2-D feature maps, which have significant differentiation of the stem species, especially for grass and wood stems. The above research shows that the ultrasonic energy features of plant stems can provide a new perspective for the study of distinguishing the structural differences among plant stem species.
In view of the characteristics of ethnic original ecological music and the limitation of human ear’s understanding of hearing. This paper presents a MFCC feature extraction method based on HHT transformation. In this method, the ethnic original ecological music signals were decomposed into several inherent mode functions (IMFs) by EEMD and Hilbert transform, in which the Hilbert marginal spectrum of each IMF was used to complete the feature extraction of HHTMFCC through the MEL scale filter. The experiment collected 13 kinds of original ecological music of ethnic minorities in Yunnan. Based on the feature extraction results of HHTMFCC, Kmeans clustering analysis method was adopted to compare and analyze the clustering effect of HHTMFCC. The experimental results showed that the HHTMFCC feature was 0.49 higher than that of MFCC in the Purity index, 1.2 lower than that of Entropy index, and 3% higher than that of F index. The experimental results show that the HHTMFCC features extracted from ethnic original music are better than the traditional MFCC features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.