The objective of this study was to evaluate the feasibility of using the Walsh transformation to detect interictal spikes in electroencephalogram (EEG) data. Walsh operators were designed to formulate characteristics drawn from experimental observation, as provided by medical experts. The merits of the algorithm are: 1) in decorrelating the data to form an orthogonal basis and 2) simplicity of implementation. EEG recordings were obtained at a sampling frequency of 500 Hz using standard 10-20 electrode placements. Independent sets of EEG data recorded on 18 patients with focal epilepsy were used to train and test the algorithm. Twenty to thirty minutes of recordings were obtained with each subject awake, supine, and at rest. Spikes were annotated independently by two EEG experts. On evaluation, the algorithm identified 110 out of 139 spikes identified by either expert (True Positives = 79%) and missed 29 spikes (False Negatives = 21%). Evaluation of the algorithm revealed a Precision (Positive Predictive Value) of 85% and a Sensitivity of 79%. The encouraging preliminary results support its further development for prolonged EEG recordings in ambulatory subjects. With these results, the false detection (FD) rate is estimated at 7.2 FD per hour of continuous EEG recording.
This study introduces an integrated algorithm based on the Walsh transform to detect interictal spikes and artifactual data in epileptic patients using recorded EEG data. The algorithm proposes a unique mathematical use of Walsh-transformed EEG signals to identify those criteria that best define the morphologic characteristics of interictal spikes. EEG recordings were accomplished using the 10-20 system interfaced with the Electrical Source Imaging System with 256 channels (ESI-256) for enhanced preprocessing and on-line monitoring and visualization. The merits of the algorithm are: (1) its computational simplicity; (2) its integrated design that identifies and localizes interictal spikes while automatically removing or discarding the presence of different artifacts such as electromyography, electrocardiography, and eye blinks; and (3) its potential implication to other types of EEG analysis, given the mathematical basis of this algorithm, which can be patterned or generalized to other brain dysfunctions. The mathematics that were applied here assumed a dual role, that of transforming EEG signals into mutually independent bases and in ascertaining quantitative measures for those morphologic characteristics deemed important in the identification process of interictal spikes. Clinical experiments involved 31 patients with focal epilepsy. EEG data collected from 10 of these patients were used initially in a training phase to ascertain the reliability of the observable and formulated features that were used in the spike detection process. Three EEG experts annotated spikes independently. On evaluation of the algorithm using the 21 remaining patients in the testing phase revealed a precision (positive predictive value) of 92% and a sensitivity of 82%. Based on the 20- to 30-minute epochs of continuous EEG recording per subject, the false detection rate is estimated at 1.8 per hour of continuous EEG. These are positive results that support further development of this algorithm for prolonged EEG recordings on ambulatory subjects and to serve as a support mechanism to the decisions made by EEG experts.
Comprehensive spatial visualization of fiber tracts from all perspectives is a highly desirable outcome in brain studies. To achieve this aim, this study establishes the foundation for a new 3D visual interface that integrates Magnetic Resonance Imaging (MRI) to Diffusion Tensor Imaging (DTI). The need for such an interface is critical for understanding brain dynamics, and for providing accurate diagnosis of key brain dysfunctions, in terms of neuronal connectivity in the human brain. Two research fronts were explored:(1) the development of new image processing techniques resulting in comprehensive visualization mechanisms that accurately establish relational positioning of neuronal fiber tracts and key landmarks in semi-transparent 3D brain images, and (2) the design of key algorithms that do not tax the computational requirements of 3D rendering and feature extraction using 2D MRI and DTI frames, remaining within practical time constraints. The system was evaluated using data from thirty patients and volunteers with the Brain Institute at Miami Children's Hospital. The highly integrated and fully embedded fiber-tracking software system provides an optimal research environment for 749 Int. J. Image Grap. 2007.07:749-765. Downloaded from www.worldscientific.com by UNIVERSITY OF PITTSBURGH on 02/20/15. For personal use only. 750 D. Sanchez et al. innovative visualization mechanisms of white matter fiber tracts. This 3D visualization system reached the implementation level that makes it ready for deployment at other clinical sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.