Purpose The purpose of this paper is to present a method which enables a robot to learn both motion skills and stiffness profiles from humans through kinesthetic human-robot cooperation. Design Methodology Approach Admittance control is applied to allow robot-compliant behaviors when following the reference trajectories. By extending the dynamical movement primitives (DMP) model, a new concept of DMP and stiffness primitives is introduced to encode a kinesthetic demonstration as a combination of trajectories and stiffness profiles, which are subsequently transferred to the robot. Electromyographic signals are extracted from a human’s upper limbs to obtain target stiffness profiles. By monitoring vibrations of the end-effector velocities, a stability observer is developed. The virtual damping coefficient of admittance controller is adjusted accordingly to eliminate the vibrations. Findings The performance of the proposed methods is evaluated experimentally. The result shows that the robot can perform tasks in a variable stiffness mode as like the human dose in the teaching phase. Originality Value DMP has been widely used as a teaching by demonstration method to represent movements of humans and robots. The proposed method extends the DMP framework to allow a robot to learn not only motion skills but also stiffness profiles. Additionally, the authors proposed a stability observer to eliminate vibrations when the robot is disturbed by environment.
Purpose The purpose of this paper is to eliminate instability which may occur when a human stiffens his arms in physical human–robot interaction by estimating the human hand stiffness and presenting a modified vibration index. Design/methodology/approach Human hand stiffness is first estimated in real time as a prior indicator of instability by capturing the arm configuration and modeling the level of muscle co-contraction in the human’s arms. A time-domain vibration index based on the interaction force is then modified to reduce the delay in instability detection. The instability is confirmed when the vibration index exceeds a given threshold. The virtual damping coefficient in admittance controller is adjusted accordingly to ensure stability in physical human–robot interaction. Findings By estimating the human hand stiffness and modifying the vibration index, the instability which may occur in stiff environment in physical human–robot interaction is detected and eliminated, and the time delay is reduced. The experimental results demonstrate significant improvement in stabilizing the system when the human operator stiffens his arms. Originality/value The originality is in estimating the human hand stiffness online as a prior indicator of instability by capturing the arm configuration and modeling the level of muscle co-contraction in the human’s arms. A modification of the vibration index is also an originality to reduce the time delay of instability detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.