Ageing increases the occurrence and development of many diseases. Exercise is believed to be an effective way to improve ageing and skeletal muscle atrophy. However, many elderly people are unable to engage in active exercise. Whole-body vibration is a passive way of moving that is especially suitable for the elderly and people who find it inconvenient to exercise. Metabolomics is the systematic study of metabolic changes in small molecules. In this study, metabolomics studies were performed to investigate the regulatory effect of whole-body vibration on the skeletal muscles of ageing mice. After 12 weeks, we found that whole-body vibration had the most obvious effect on lipid metabolism pathways (such as linoleic acid, α-linolenic acid metabolism, glycerophospholipid metabolism pathways) in skeletal muscle of ageing mice. Through further research we found that whole-body vibration decreased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol and very low-density lipoprotein in blood; decreased the lipid deposition in skeletal muscle; decreased the protein expression of monocyte chemoattractant protein-1 and interleukin-6; improved the protein levels of phosphorylated insulin receptor substrate-1, phosphate phosphoinositide 3-kinase and p-AKT; improved the protein levels of klotho; and decreased the protein expression of p53. These findings reveal that whole-body vibration might postpone senility by attenuating lipid deposition and reducing chronic inflammation and the insulin resistance of skeletal muscle.
Background Acylcarnitine is an intermediate product of fatty acid oxidation. It is reported to be closely associated with the occurrence of diabetic cardiomyopathy (DCM). However, the mechanism of acylcarnitine affecting myocardial disorders is yet to be explored. This current research explores the different chain lengths of acylcarnitines as biomarkers for the early diagnosis of DCM and the mechanism of acylcarnitines for the development of DCM in-vitro. Methods In a retrospective non-interventional study, 50 simple type 2 diabetes mellitus patients and 50 DCM patients were recruited. Plasma samples from both groups were analyzed by high throughput metabolomics and cluster heat map using mass spectrometry. Principal component analysis was used to compare the changes occurring in the studied 25 acylcarnitines. Multivariable binary logistic regression was used to analyze the odds ratio of each group for factors and the 95% confidence interval in DCM. Myristoylcarnitine (C14) exogenous intervention was given to H9c2 cells to verify the expression of lipid metabolism-related protein, inflammation-related protein expression, apoptosis-related protein expression, and cardiomyocyte hypertrophy and fibrosis-related protein expression. Results Factor 1 (C14, lauroylcarnitine, tetradecanoyldiacylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, arachidic carnitine, octadecanoylcarnitine, 3-hydroxypalmitoleylcarnitine) and factor 4 (octanoylcarnitine, hexanoylcarnitine, decanoylcarnitine) were positively correlated with the risk of DCM. Exogenous C14 supplementation to cardiomyocytes led to increased lipid deposition in cardiomyocytes along with the obstacles in adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways and affecting fatty acid oxidation. This further caused myocardial lipotoxicity, ultimately leading to cardiomyocyte hypertrophy, fibrotic remodeling, and increased apoptosis. However, this effect was mitigated by the AMPK agonist acadesine. Conclusions The increased plasma levels in medium and long-chain acylcarnitine extracted from factors 1 and 4 are closely related to the risk of DCM, indicating that these factors can be an important tool for DCM risk assessment. C14 supplementation associated lipid accumulation by inhibiting the AMPK/ACC/CPT1 signaling pathway, aggravated myocardial lipotoxicity, increased apoptosis apart from cardiomyocyte hypertrophy and fibrosis were alleviated by the acadesine.
Accumulation of lipids in the myocardium contributes to the development of cardiac dysfunctions and various chronic diseases, such as diabetic cardiomyopathy (DCM). Curcumin (Cur) can relieve lipid accumulation problems, but its efficiency is limited by poor water solubility and biocompatibility. Herein, gold nanoclusters (AuNCs) were used to improve the efficiency of Cur, and the conjugates Curcumin-AuNCs (AuCur) were developed. In the treatment of high-fat-induced myocardial cell damage, we found that AuCur could effectively reduce intracellular lipid accumulation, the increase of reactive oxygen species (ROS), the increase of mitochondrial division, and the increase of apoptosis compared with Cur. AuCur decreased the expression of the peroxisome proliferator-activated receptors-α subtype (PPARα), and the therapeutic effect of AuCur was canceled when the expression of PPARα was enhanced. For the above reasons, AuCur treated the toxic effect of high lipid on cardiomyocytes by regulating PPARα, providing a new idea and method for the treatment of DCM.
Objective. In patients with type 2 diabetes mellitus (T2DM), it is unknown whether acylcarnitine changes in the patient’s plasma as diabetic peripheral neuropathy (DPN) occurs. The purpose of the present study was to investigate the correlation between acylcarnitines and DPN in Chinese patients with T2DM. Methods. A total of 508 patients admitted to the First Affiliated Hospital of Jinzhou Medical University were included in this study, and all of whom were hospitalized for T2DM from January 2018 to December 2020. The diagnostic criteria for DPN were based on the 2017 Chinese Guidelines for the Prevention of Type 2 Diabetes. The contents of 25 acylcarnitine metabolites in fasting blood were determined by mass spectrometry. The measured acylcarnitines were classified by factor analysis, and the factors were extracted. To determine the correlation between acylcarnitines and DPN, binary logistic regression analysis was applied. Results. Among the 508 T2DM patients, 270 had DPN. Six factors were extracted from 25 acylcarnitines, and the cumulative contribution rate of variance was 61.02%. After the adjustment for other potential confounding factors, such as other carnitines and conventional risk factors, Factor 2 was positively associated with an increased risk of DPN (OR: 1.38, 95% CI: 1.13-1.69). Factor 2 contained acetylcarnitine (C2), propionylcarnitine (C3), butylcarnitine (C4), and isovalerylcarnitine (C5). Conclusions. Plasma levels of short-chain acylcarnitines (C2, C3, C4, and C5) were positively associated with DPN risk.
Whole-body vibration (WBV) can improve skeletal muscle function in aging mice, but whether the effect on young and aging skeletal muscle is consistent has not been studied. We selected C57BL/6J mouse models, which were divided into young control group (YC), young vibration group (YV), aging control group (AC) and aging vibration group (AV). After 12 weeks of WBV, we found that compared with the YC group, the pathways of linoleic acid metabolism, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, nicotinate and nicotinamide metabolism, glycine, serine and threonine metabolism, and arginine and proline metabolism improved significantly in the YV group. Compared with the AC group, the pathways of arachidonic acid metabolism, alpha-linolenic acid metabolism, biosynthesis of unsaturated fatty acids, pentose and glucuronate interconversions and pentose phosphate pathway improved significantly in the AV group. Furthermore, we found that WBV decreased triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA) levels in aging mice, improved mitochondrial membrane potential, and increased the expression of phosphorylated activated protein kinase (p-AMPK), peroxisome proliferator-activated receptor coactivator-1α (PGC-1α) and carnitine palmitoyl transferase 1B (CPT1B) in the skeletal muscle of young and aging mice. Our study revealed that WBV mainly improved lipid metabolism and amino acid metabolism pathways of skeletal muscle in young mice and mainly improved lipid metabolism and glucose metabolism pathways of skeletal muscle in aging mice. WBV can activate the AMPK/CPT1 signaling pathway and improve mitochondrial function in skeletal muscle in both young and aging mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.