Directed cell migration requires the orientation of the Golgi and centrosome toward the leading edge. We show that stimulation of interphase cells with the mitogens epidermal growth factor or lysophosphatidic acid activates the extracellular signal–regulated kinase (ERK), which phosphorylates the Golgi structural protein GRASP65 at serine 277. Expression of a GRASP65 Ser277 to alanine mutant or a GRASP65 1–201 truncation mutant, neither of which can be phosphorylated by ERK, prevents Golgi orientation to the leading edge in a wound assay. We show that phosphorylation of GRASP65 with recombinant ERK leads to the loss of GRASP65 oligomerization and causes Golgi cisternal unstacking. Furthermore, preventing Golgi polarization by expressing mutated GRASP65 inhibits centrosome orientation, which is rescued upon disassembly of the Golgi structure by brefeldin A. We conclude that Golgi remodeling, mediated by phosphorylation of GRASP65 by ERK, is critical for the establishment of cell polarity in migrating cells.
GRASP55 and GRASP65 were knocked out, and it was found that double knockout of GRASP proteins disperses the Golgi stack into single cisternae and tubulovesicular structures, accelerates protein trafficking, and impairs accurate glycosylation of proteins and lipids.
Cysteine dioxygenase is a non-heme mononuclear iron metalloenzyme that catalyzes the oxidation of cysteine to cysteine sulfinic acid with addition of molecular dioxygen. This irreversible oxidative catabolism of cysteine initiates several important metabolic pathways related to diverse sulfurate compounds. Cysteine dioxygenase is therefore very important for maintaining the proper hepatic concentration of intracellular free cysteine. Mechanisms for mouse and rat cysteine dioxygenases have recently been reported based on their crystal structures in the absence of substrates, although there is still a lack of direct evidence. Here we report the first crystal structure of human cysteine dioxygenase in complex with its substrate L-cysteine to 2.7 Å , together with enzymatic activity and metal content assays of several single point mutants. Our results provide an insight into a new mechanism of cysteine thiol dioxygenation catalyzed by cysteine dioxygenase, which is tightly associated with a thioether-bonded tyrosine-cysteine cofactor involving Tyr-157 and Cys-93. This cross-linked protein-derived cofactor plays several key roles different from those in galactose oxidase. This report provides a new potential target for therapy of diseases related to human cysteine dioxygenase, including neurodegenerative and autoimmune diseases.Cysteine dioxygenase (CDO, 2 EC 1.13.11.20) is a non-heme mononuclear iron metalloenzyme that catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid (CSA) with addition of molecular oxygen (1) (Structure 1). This oxidative catabolism of cysteine initiates several important metabolic pathways related to pyruvate and several sulfurate compounds, including sulfate, hypotaurine, and taurine. CDO is expressed at appreciable levels in the brain, kidney, and lung, with extremely high levels in liver tissue (2-5), where CDO plays an important role in maintaining the hepatic concentration of intracellular free cysteine within a proper narrow range (6). When the levels of cysteine decrease below this range, the increase of CDO ubiquitination rate results in rapid degradation of the ubiquitinated portion by the 26 S proteasome system (7,8). However, the precise means by which cysteine regulates CDO ubiquitination remain unknown.Intracellular free cysteine is cytotoxic and neuroexcitotoxic due to oxidative damage via formation of free radicals in the presence of iron (9 -11). Elevated cysteine levels were reported previously in relation to several neurodegenerative diseases, including the well known Parkinson and Alzheimer diseases (12-14), and autoimmune diseases such as systemic lupus erythematosus and rheumatoid arthritis (15, 16). CDO is considered to be involved in these diseases due to its function in regulating free cysteine levels.Sequence alignment classifies CDO as a member of the cupin superfamily (see Fig. 1), whose members possess what may be the most diverse range of functions, encompassing ϳ18 subclasses. Nonetheless, neither of the exact characteristic conserved sequenc...
The ubiquitous thioredoxin fold proteins catalyze oxidation, reduction, or disulfide exchange reactions depending on their redox properties. They also play vital roles in protein folding, redox control, and disease. Here, we have shown that a single residue strongly modifies both the redox properties of thioredoxin fold proteins and their ability to interact with substrates. This residue is adjacent in three-dimensional space to the characteristic CXXC active site motif of thioredoxin fold proteins but distant in sequence. This residue is just N-terminal to the conservative cis-proline. It is isoleucine 75 in the case of thioredoxin. Our findings support the conclusion that a very small percentage of the amino acid residues of thioredoxin-related proteins are capable of dictating the functions of these proteins.The thioredoxin fold is the core scaffold of numerous proteins that control disulfide redox activity in the cell (1-3). These redox proteins share very little sequence homology, but all of them incorporate the four-stranded -sheet, three flanking ␣-helices, and the redox-active CXXC motif of the TRX 5 fold (Fig. 1A). The archetype of the family is thioredoxin (4), a disulfide reductase that maintains a reducing cytosolic environment. Other TRX fold redox proteins include the Dsb proteins (1), which regulate the formation of disulfide bonds in prokaryotes, and protein-disulfide isomerase (5), which catalyzes the oxidation and shuffling of disulfides in the endoplasmic reticulum of eukaryotic cells.This wide range of redox activities of TRX fold proteins is thought to be a consequence of modifications to the common scaffold, which result in different redox properties. Thus, the redox potential of Escherichia coli thioredoxin is very reducing, at Ϫ271 mV (6, 7), whereas that of the oxidizing periplasmic protein E. coli DsbA is Ϫ120 mV (8). Thioredoxin fold proteins that participate in a wide range of thiol disulfide exchange reactions, such as the eukaryotic protein-disulfide isomerases, have intermediate redox potentials (around Ϫ160 mV (9)).Thioredoxin-related proteins provide an attractive model for the study of how protein function is dictated by sequence and three-dimensional structure; this is because their functions are, in part, determined by their redox properties, which in turn, are easy to quantify. For example, mutations in thioredoxin that make its redox potential more oxidative complement null mutations in the oxidase DsbA (10, 11). A detailed understanding of how thioredoxin fold sequence affects redox properties provides an excellent opportunity to relate sequence and function. Previous work has focused on the role of the CXXC "redox rheostat" active site in determining the properties of thioredoxin-related proteins (3,12,13). Experiments that exchange the X-X dipeptide of one thiol-disulfide oxidoreductase with that of another generally result in an oxidoreductase with a redox potential partially shifted in the direction of the oxidoreductase protein that served as the source of the dipepti...
In vitro assays identified the Golgi peripheral protein GRASP65 as a Golgi stacking factor that links adjacent Golgi cisternae by forming mitotically regulated trans-oligomers. These conclusions, however, require further confirmation in the cell. In this study, we showed that the first 112 amino acids at the N-terminus (including the first PDZ domain, PDZ1) of the protein are sufficient for oligomerization. Systematic electron microscopic analysis showed that the expression of non-regulatable GRASP65 mutants in HeLa cells enhanced Golgi stacking in interphase and inhibited Golgi fragmentation during mitosis. Depletion of GRASP65 by small interference RNA (siRNA) reduced the number of cisternae in the Golgi stacks; this reduction was rescued by expressing exogenous GRASP65. These results provided evidence and a molecular mechanism by which GRASP65 stacks Golgi cisternal membranes. Further experiments revealed that inhibition of mitotic Golgi disassembly by expressing non-regulatable GRASP65 mutants did not affect equal partitioning of the Golgi membranes into the daughter cells. However, it delayed mitotic entry and suppressed cell growth; this effect was diminished by dispersing the Golgi apparatus with Brefeldin A treatment prior to mitosis, suggesting that Golgi disassembly at the onset of mitosis plays a role in cell cycle progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.