In recent years, Internet of Things technologies gained momentum in various application areas, including the Smart Home field. In this view, the smart objects available in the house can communicate with each other and with the outside world by adopting solutions already proposed for Internet of Things. In fact, among the challenges to face during the design and implementation of an Internet of Things-based Smart Home infrastructure, battery usage represents a key point for the realization of an efficient solution. In this context, the communication technology chosen plays a fundamental role, since transmission is generally the most energy demanding task, and Internet of Things communication technologies are designed to reduce as much as possible the power consumption. This article describes an Internet of Thingsoriented architecture for the Smart Home, based on the long-range and low-power technology LoRa. Moreover, in order to enable the devices to communicate with each other and the outside world, the Message Queue Telemetry Transfer protocol is used as a domotic middleware. We show that LoRa, designed by having in mind the typical requirements of Internet of Things (i.e. low power consumption, sporadic transmission, and robustness to interference), is well-suited to also meet the need of more established home automation systems, specifically the low latency in message delivery. Interoperability among different devices may also be obtained through the Message Queue Telemetry Transfer midlleware.
Technologies for personal safety and security play an increasing role in modern life, and are among the most valuable features expected to be supported by so-called smart homes. This paper presents a low-complexity Android application designed for both mobile and embedded devices, that exploits the available on-board camera to easily capture two images of a subject, and processes them to discriminate a true 3D and live face, from a fake or printed 2D one. The liveness detection based on such a discrimination provides antispoofing capabilities to secure access control based on face recognition. The limited computational complexity of the developed application makes it suitable for practical implementation in video-entry phones based on embedded Android platforms. The results obtained are satisfactory even in different ambient light conditions, and further improvements are being developed to deal with low precision image acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.