Abstract-This paper reviews recent works in the literature on the use of systems based on Radar and RGB-Depth sensors for fall detection, and discusses outstanding research challenges and trends related to this research field. Systems to detect reliably fall events and promptly alert carers and first responders have gained significant interest in the past few years in order to address the societal issue of an increasing number of elderly people living alone, with the associated risk of them falling and the consequences in terms of health treatments, reduced well-being, and costs. The interest in radar and RGB-D sensors is related to their capability to enable contactless and non-intrusive monitoring, which is an advantage for practical deployment and users' acceptance and compliance, compared with other sensor technologies such as video-cameras, or wearables. Furthermore, the possibility of combining and fusing information from heterogeneous types of sensors is expected to improve the overall performance of practical fall detection systems. Researchers from different fields can benefit from multidisciplinary knowledge and awareness of the latest developments in radar and RGB-D sensors that this paper is discussing.
The aim of Active and Assisted Living is to develop tools to promote the ageing in place of elderly people, and human activity recognition algorithms can help to monitor aged people in home environments. Different types of sensors can be used to address this task and the RGBD sensors, especially the ones used for gaming, are cost-effective and provide much information about the environment. This work aims to propose an activity recognition algorithm exploiting skeleton data extracted by RGBD sensors. The system is based on the extraction of key poses to compose a feature vector, and a multiclass Support Vector Machine to perform classification. Computation and association of key poses are carried out using a clustering algorithm, without the need of a learning algorithm. The proposed approach is evaluated on five publicly available datasets for activity recognition, showing promising results especially when applied for the recognition of AAL related actions. Finally, the current applicability of this solution in AAL scenarios and the future improvements needed are discussed.
We propose an automatic, privacy-preserving, fall detection method for indoor environments, based on the usage of the Microsoft Kinect® depth sensor, in an “on-ceiling” configuration, and on the analysis of depth frames. All the elements captured in the depth scene are recognized by means of an Ad-Hoc segmentation algorithm, which analyzes the raw depth data directly provided by the sensor. The system extracts the elements, and implements a solution to classify all the blobs in the scene. Anthropometric relationships and features are exploited to recognize one or more human subjects among the blobs. Once a person is detected, he is followed by a tracking algorithm between different frames. The use of a reference depth frame, containing the set-up of the scene, allows one to extract a human subject, even when he/she is interacting with other objects, such as chairs or desks. In addition, the problem of blob fusion is taken into account and efficiently solved through an inter-frame processing algorithm. A fall is detected if the depth blob associated to a person is near to the floor. Experimental tests show the effectiveness of the proposed solution, even in complex scenarios.
Several types of sensors have been available in off-the-shelf mobile devices, including motion, magnetic, vision, acoustic, and location sensors. This paper focuses on the fusion of the data acquired from motion and magnetic sensors, i.e., accelerometer, gyroscope and magnetometer sensors, for the recognition of Activities of Daily Living (ADL). Based on pattern recognition techniques, the system developed in this study includes data acquisition, data processing, data fusion, and classification methods like Artificial Neural Networks (ANN). Multiple settings of the ANN were implemented and evaluated in which the best accuracy obtained, with Deep Neural Networks (DNN), was 89.51%. This novel approach applies L 2 regularization and normalization techniques on the sensors' data proved it suitability and reliability for the ADL recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.