SummaryLeaf mould disease in tomato is caused by the biotrophic fungus Cladosporium fulvum. An Ac/Ds targeted transposon tagging strategy was used to isolate the gene conferring resistance to race 5 of C. fulvum, a strain expressing the avirulence gene Avr4. An infection assay of 2-weekold seedlings yielded five susceptible mutants, of which two had a Ds element integrated in the same gene at different positions. This gene, member of a gene family, showed high sequence homology to the C. fulvum resistance genes Cf-9 and Cf-2. The gene is predicted to encode an extracellular transmembrane protein containing a divided domain of 25 leucine-rich repeats. Three mutants exhibited a genomic deletion covering most of the Lycopersicon hirsutum introgressed segment, including the Cf-4 locus. Southern blot analysis revealed that this deletion includes the tagged gene and five homologous sequences. To test whether the tagged gene confers resistance to C. fulvum via Avr4 recognition, the Avr4 gene was expressed in planta. Surprisingly, expression of the Avr4 gene still triggered a specific necrotic response in the transposon-tagged plants, indicating that the tagged resistance gene is not, or is not the only gene, involved in Avr4 recognition. Mutants harbouring the genomic deletion did not show this Avr4-specific response. The deleted segment apparently contains, in addition to the tagged gene, one or more other genes, which play a role in the Avr4 responses. The tagged gene is present at the Cf-4 locus, but it does not necessarily recognize Avr4 and is therefore designated Cf-4A.
Parthenocarpy is the development of the fruit in absence of pollination and/or fertilization. In tomato, parthenocarpy is considered as an attractive trait to solve the problems of fruit setting under unfavorable conditions. We studied the genetics of parthenocarpy in two different lines, IL5-1 and IVT-line 1, both carrying Solanum habrochaites chromosome segments. Parthenocarpy in IL5-1 is under the control of two QTLs, one on chromosome 4 (pat4
The recessive mutation ps-2, which appeared spontaneously in tomato, confers functional male sterility due to non-dehiscent anthers. In this study, we isolated and characterized the PS-2 gene. A single nucleotide mutation in a novel tomato polygalacturonase gene is responsible for the ps-2 phenotype. The mutation in ps-2 is responsible for an alternative splicing during maturation of the pre-mRNA, which leads to an aberrant mRNA. DiVerentiation between ps-2 and wild type (PS-2) anthers only appears in the Wnal developmental stage in which the stomium remains closed in the mutant. To our knowledge, this is the Wrst functional sterility gene isolated in the Solanaceae family. The speciWc expression of the Arabidopsis homolog of PS-2 in the anther dehiscence zone suggests a conserved mode of action over the plant kingdom, which means that the repression of PS-2 homologs may be a potential way to introduce functional sterility in other species.
A detailed map of part of the short arm of chromosome 1 proximal to the Cf-4/Cf-9 gene cluster was generated by using an F2 population of 314 plants obtained from the cross between the remotely related species Lycopersicon esculentum and L. peruvianum. Six markers that cosegregate in an L. esculentum x L. pennellii F2 population showed high recombination frequencies in the present interspecific population, spanning an interval of approximately 13 cM. Physical distances between RFLP markers were estimated by pulsed field gel electrophoresis of high-molecular-weight DNA and by identifying YACs that recognized more than one RFLP marker. In this region 1 cM corresponded to 55-110 kb. In comparsion with the value of 730 kb per cM averaged over the entire genome, this reflects the remarkably high recombination frequencies in this region in the hybrid L. esculentum x L. peruvianum progeny population. The present data underline the fact that recombination is not a process that occurs randomly over the entire genome, but can vary dramatically in intensity between chromosomal regions and among populations.
Functional male sterility is an important trait for the production of hybrid seeds. Among the genes coding for functional male sterility in tomato is the positional sterility gene ps-2. ps-2 is monogenic recessive, confers non-dehiscent anthers and is the most suitable for practical uses. In order to have tools for molecularassisted selection (MAS) we Wne mapped the ps-2 locus. This was done in an F 2 segregating population derived from the interspeciWc cross between a functionally male sterile line (ps-2/ps-2; Solanum lycopersicum) and a functionally male fertile line (S. pimpinellifolium). Here we report the procedure that has led to the high-resolution Wne mapping of the ps-2 locus in a 1.65 cM interval delimited by markers T0958 and T0635 on the short arm of Chromosome 4. The presence of many COS markers in the local high-resolution map allowed us to study the synteny between tomato and Arabidopsis at the ps-2 locus region. No obvious candidate gene for ps-2 was identiWed among the known functional male sterility genes in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.