Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-producing with variable action modes. However, endolytic Δ-producing alginate lyases remain undiscovered. Herein, a new Flammeovirga protein, Aly2, was classified into the polysaccharide lyase 7 superfamily. The recombinant enzyme and its truncated protein showed similar stable biochemical characteristics. Using different sugar chains as testing substrates, we demonstrated that the two enzymes are bifunctional while G-preferring, endolytic whereas monosaccharide-producing. Furthermore, the catalytic module of Aly2 can vary the action modes depending on the terminus type, molecular size, and M/G content of the substrate, thereby yielding different levels of M, G, and Δ units. Notably, the enzymes preferentially produce Δ units when digesting small size-defined oligosaccharide substrates, particularly the smallest substrate (unsaturated tetrasaccharide fractions). Deletion of the non-catalytic region of Aly2 caused weak changes in the action modes and biochemical characteristics. This study provided extended insights into alginate lyase groups with variable action modes for accurate enzyme use.
BackgroundMacroalgae and microalgae, as feedstocks for third-generation biofuel, possess competitive strengths in terms of cost, technology and economics. The most important compound in brown macroalgae is alginate, and the synergistic effect of endolytic and exolytic alginate lyases plays a crucial role in the saccharification process of transforming alginate into biofuel. However, there are few studies on the synergistic effect of endolytic and exolytic alginate lyases, especially those from the same bacterial strain.ResultsIn this study, the endolytic alginate lyase AlyPB1 and exolytic alginate lyase AlyPB2 were identified from the marine bacterium Photobacterium sp. FC615. These two enzymes showed quite different and novel enzymatic properties whereas behaved a strong synergistic effect on the saccharification of alginate. Compared to that when AlyPB2 was used alone, the conversion rate of alginate polysaccharides to unsaturated monosaccharides when AlyPB1 and AlyPB2 acted on alginate together was dramatically increased approximately sevenfold. Furthermore, we found that AlyPB1 and AlyPB2 acted the synergistic effect basing on the complementarity of their substrate degradation patterns, particularly due to their M-/G-preference and substrate-size dependence. In addition, a novel method for sequencing alginate oligosaccharides was developed for the first time by combining the 1H NMR spectroscopy and the enzymatic digestion with the exo-lyase AlyPB2, and this method is much simpler than traditional methods based on one- and two-dimensional NMR spectroscopy. Using this strategy, the sequences of the final tetrasaccharide and pentasaccharide product fractions produced by AlyPB1 were easily determined: the tetrasaccharide fractions contained two structures, ΔGMM and ΔMMM, at a molar ratio of 1:3.2, and the pentasaccharide fractions contained four structures, ΔMMMM, ΔMGMM, ΔGMMM, and ΔGGMM, at a molar ratio of ~ 1:1.5:3.5:5.25.ConclusionsThe identification of these two novel alginate lyases provides not only excellent candidate tool-type enzymes for oligosaccharide preparation but also a good model for studying the synergistic digestion and saccharification of alginate in biofuel production. The novel method for oligosaccharide sequencing described in this study will offer a very useful approach for structural and functional studies on alginate.
Based on multiple interactions and fluorescence quenching, we report a novel homogeneous detection method for Glypican-3 which shows a series of significant advantages, including low cost, ease of preparation, rapid response, and high sensitivity and has great potential in the clinical diagnosis of hepatocellular carcinoma and proteoglycan detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.