A bacterial mannitol-1-phosphate dehydrogenase (mtlD) gene driven by the constitutive cauliflower mosaic virus (CaMV) 35S promoter was transferred into tomato plants using an Agrobacterium tumefaciens-mediated transformation protocol in an attempt to improve abiotic stress tolerance in the transformed plants. Transgene integration was confirmed by PCR analysis and Southern blot analysis, and transgene expression was confirmed by reverse transcription (RT)-PCR and direct mtlD (EC 1.1.1.17) activity. Upon exposure to low temperature stress (4°C) in a cold chamber, transgenic plants survived up to 48 h, while nontransformed plants were unable to survive and gradually died. Transgenic plants subjected to the chilling stress showed a significant decrease in electrolyte leakage and increased lipid peroxidation, as assessed by measuring malondialdehyde (MDA) content. Under the cold condition, transgenic plants also showed a significant increase in the activities of antioxidant enzymes (superoxide dismutase and catalase) and in relative water content (RWC) in comparison to non-transformed plants. Drought (polyethylene glycol in medium) and salinity (sodium chloride in medium) tolerance tests revealed that transgenic lines exhibited a higher tolerance for abiotic stresses than non-transformed plants. These findings indicate that the introduction of a bacterial mtlD gene into tomato conferred tolerance to abiotic stresses to the transformed tomato plants.
Health hazards of titanium dioxide nanoparticles (TiO2-NPs) have raised severe concerns because of the paucity of information regarding the toxic effects among the population. In the present research, the in vitro and in vivo cytotoxic potential of TiO2-NPs were evaluated using flow cytometric techniques. Further, in vitro and in vivo genotoxic endpoints were estimated by means of comet, micronucleus (MN), and chromosomal aberration (CA) assays. In vitro analysis was performed at the concentration range of 10–100 µg/mL using murine RAW 264.7 cells. In vivo experiments were conducted on Albino mice (M/F) by exposing them to 200 and 500 mg/kg TiO2-NPs for 90 days. Decreased percentage of cell viability with higher doses of TiO2-NPs was evident in both in vitro and in vivo flow cytometric analysis. Further, an impaired cell cycle (G0/G1, S, and G2/M) was reflected in the present investigation following the exposure to TiO2-NPs. Increased comet scores such as tail length, % DNA in tail, tail moment, and olive moment were also observed with the higher doses of TiO2-NPs in vitro and in vivo comet assays. Finally, the in vivo MN and CA assays revealed the formation of MN and chromosomal breakage following the exposure to TiO2-NPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.